Introduction

AutoLISP®, an implementation of the LISP programming language, is an inte-
gral part of the AutoCAD® package. AutoLISP lets users and AutoCAD devel-
opers write macro programs and functions in a powerful high-level language
that is well suited to graphics applications. AutoLISP is easy to learn and use,
and is very flexible.

Numerous AutoLISP programs, including many of the examples in this man-
ual, are supplied with AutoCAD in the sample/ directory and on the bonus
CD-ROM. Many are also available as shareware and from other third-party
developers. Learning how to access and load AutoLISP files will increase your
productivity and enhance AutoCAD’s flexibility. You may decide, after using
some of these programs, that you would like to create your own applications;
since AutoLISP code can also be entered at the command line you will find it
very easy to learn and experiment with. You may also find that once you start
learning AutoLISP, you will use it to augment AutoCAD’s commands.

If you are not interested in writing AutoLISP programs you should refer to the
discussion of AutoLISP in the AutoCAD Customization Manual. This will pro-
vide you with a basic understanding of AutoLISP and how to load the pro-
grams you acquire.

This is a reference manual; it is not a LISP programming tutorial. Although
practical examples in the use of AutoLISP are provided, we recommend that
you obtain various texts on LISP in order to learn the programming language.
Suggestions are LISP by Winston and Horn (second edition) and Looking at LISP
by Tony Hasemer, both published by Addison-Wesley. LISP is a language that
has many dialects, including MacLISP, InterLISP, ZetaLISP, and Common LISF.
Many other texts on LISP and AutoLISP are available in your local computer
bookstore. AutoLISP adheres most closely to the syntax and conventions of
Common LISP, but AutoLISP is a small subset and has many additional func-
tions specific to AutoCAD. This reference manual lists all of the AutoLISP func-
tions and explains how you use them.

AutoLISP was based on XLISP, a program developed by David Betz. We grate-
fully acknowledge the contribution his work made to the development of
AutoLISP.

Introduction

Introduction

Why LISP?

We chose LISP as the first AutoCAD application interface language for several
reasons:

LISP is among the easiest of all programming languages to learn and to
master.

It is the chosen language for research and development of artificial intelli-
gence and expert systems.

Because of LISP’s simple syntax, a LISP interpreter is fairly easy to imple-
ment and requires little memory.

A LISP interpreter is ideally suited to the unstructured interaction that
characterizes the design process.

LISP excels at working with collections of heterogeneous objects in various
sized groups, which is precisely the type of information a CAD system like
AutoCAD manipulates.

The introduction of the AutoCAD Development System™ (ADS®) in
Release 11 has provided an additional language for the development of appli-
cations. Autodesk is committed to long-term support for AutoLISP, ADS is
offered as an alternative.

Organization of the Manual

This manual is a reference for AutoLISP programmers; it also includes some
descriptive sections and code examples to supplement the function defini-
tions. It is organized as follows:

This introduction provides preliminary information on AutoLISP and how
to use this manual. It also briefly describes the new and revised AutoLISP
functions.

Chapter 1 contains an introduction to programming in AutoLISP and
describes the methods for defining and automatically loading functions.

Chapters 2 and 3 provide an in-depth look at some of the AutoLISP func-
tions. These chapters include several programming examples.

Chapter 4 contains a full description of the AutoLISP functions, organized
alphabetically.

Chapter § describes methods for memory management and programming
techniques. Some of these techniques are used in the sample routines pro-
vided with AutoCAD. You should also see the AutoCAD Extras Manual for
information on other applications.

Appendix A lists the set of AutoLISP and ADS functions, for comparison
and as a quick reference to arguments.

Appendix B is a reference to Drawing Interchange Format (DXF™) group
codes. Its tables are organized both by number and by entity type.

Appendix C lists the symbolic values of error codes that are reported by the
AutoCAD system variable ERRNO.

2 Why LISP?

Introduction

e Appendix D explains the error messages returned by AutoLISF.

e Appendix E is an AutoLISP tutorial. It walks you through the creation of a
new AutoCAD command that uses a dialogue box for user input.

e Appendix F is a decimal and octal ASCII codes chart.

Notational Conventions

This reference manual uses certain conventions to describe the behaviour of
functions. For example:

(moo string number ...)

The function name is shown as you should enter it. The italicized items fol-
lowing the function name indicate the number and type of arguments
expected by the function.

In this example, the function moo has two required arguments: a string and a
number. The ellipsis (“. . .”) indicates that additional numeric arguments may
be supplied to the function. Do not include the ellipsis when you invoke the
function. Given the format of a moo function call just shown, the following
are valid calls to the moo function:

(moeo "Hello" 5)
(e "HiY 1.2°3)

The following examples do not adhere to the prescribed format and result in

errors:
(moo 1 2 3) First argument must be a string
(moo "Hello") Must have at least one numeric argument
(Mmoo "do™, s Second argument must be a number, not a list

Optional arguments are shown enclosed in square brackets (“|]”) and unless
followed by an ellipsis may be used only once, as in:

(foo string [number])

Here, the function foo requires one string argument and accepts one optional
numeric argument. For example, the following are valid calls to the foo func-
tion:

(fea "estch)
{foo "ecateh" 22)

The following examples do not adhere to the prescribed format and result in

errors:
(foo 44 13) First argument must be a string
(foo "foe" 44 13) Too many arguments

Organization of the Manual 3

Introduction

Typeface Conventions

This manual uses the following typeface conventions:

Convention
Serif typeface
Initial Caps

UPPERCASE

Italic

Sans serif typeface
Boldface

Not bold

Courier typeface

Boldface

Not bold

Italic

Key caps

Use

Names of drawing entities:
Arcs, Circles, Lines

Names of AutoCAD commands:

SAVE, COPY, STATUS
AutoCAD system variables, their values, and environ-
ment variables:

CMDECHO, DIMZIN,

CONTINUOQUES,

ACAD, ACADXMEM

Filenames, pathnames, and filename extensions:
acad.lsp, /ust/acad/acad, .mnu

Names of operating system (e.g., MS-DOS® or UNIX®)
commands:

At the DOS prompt, enter dir.

At the UNIX prompt, enter Is.

Text that the user enters. You would enter the PLINE
command at the AutoCAD Command: prompt:
Command: pline

Prompts and other text displayed on screen:
Command:
Result is 10.51

AutoLISP and C function names:
command, ads_command ()

AutoLISP and C variables, types, values, and sample
listings of AutoLISP and C code:
ptl, ads_point, NULL

Formal arguments specified in function definitions:
(distof string [mede])
The distof function requires one argument,
string, and optionally accepts mode.

Keys on the keyboard:

Delete] , (ScroliLack] , 3 Wl o

The Enter or Return key appears like this:

(Return] or [«

When you must press two keys simultaneously, a plus sign
connects the two keys:

(Cr)+(c]

4 Organization of the Manual

Introduction

Recent Changes and Enhancements

Areas of major changes include the following:

°

The PLOT command is now accessible from AutoLISP.

AME commands can be called from an AutoLISP routine; see the AME
Reference Manual for a complete description.

ASE commands can also be called from AutoLISP routines; see the ASE
Reference Manual.

The ssget function now supports new entity selection methods in addi-
tion to various combinations of entity filtering of group codes, relational
tests, and Boolean functions.

The entsel and nentsel functions now return keywords as well as pick
points.

The new nentselp function is similar to nentsel but allows point spec-
ification without user input.

The initget function now lets user-input functions accept arbitrary key-
board input.

The new functions angtof and distof let you convert strings represent-
ing angles and distances to reals.

The new textbox function lets you retrieve text extents.
The new tablet function provides control over digitizer calibration.

The new grvecs function lets you display multiple vectors on the graph-
ics screen.

The new alert function displays an alert box with a warning message
supplied by the application.

The new getfiled function lets an AutoLISP application prompt the user
for a filename by displaying the standard AutoCAD file dialogue box.

The atomlist symbol has been replaced by a new atoms-£family function.

As installed, the acad/ directory contains a file named readme.doc. Read this file;
it describes last-minute changes and updates to the AutoCAD and AutoLISP
documentation.

Programming Interfaces to Standard External Applications

Some external (ADS) applications that are now standard to AutoCAD provide
features that your applications can access. These functions are defined when
the file acadapp (this file has a .exp extension on DOS platforms) is loaded.
They fall into two categories:

Externally defined AutoCAD functions

The functions acad_helpdlg and acad_colordlg allow you to display
the standard AutoCAD Help and colour selection dialogue boxes. The
function acad_strlsort sorts a list of strings alphabetically.

Organization of the Manual 5

Introduction

* Application programming interfaces to interactive AutoCAD commands

Commands that AutoCAD users would normally access interactively,
using dialogue boxes, can be invoked as external functions (using the
c:xxx form). These commands include BHATCH, BPOLY, PSDRAG, PSIN,
and PSFILL.

New sections in chapter 4 describe these functions and how to use them. See
“ADS Defined AutoLISP Functions” on page 172 and “ADS Defined Com-
mands” on page 174.

Programmable Dialogue Boxes

Starting with Release 12 of AutoCAD, you can design and implement your
own dialogue boxes, similar to those AutoCAD uses. Support for dialogue
boxes is independent of the hardware and operating system you are using. The
behaviour of a dialogue box remains essentially the same across all platforms,
while its appearance changes to that of the platform’s graphical user interface
(GUI).

The design of dialogue boxes is defined in ASCII text files written in Dialogue
Control Language (DCL). The DCL description of a box determines what it con-
tains: buttons, lists, text, and so on, and how these components relate to each
other. The use and behaviour of a dialogue depends on the application that
employs it. Both AutoLISP and the AutoCAD Development System (ADS) pro-
vide functions for handling dialogue boxes.

To learn more about creating your own dialogue boxes, see chapter 9, “Pro-
grammable Dialogue Boxes,” in the AutoCAD Customization Manual.

Organization of the Manual

Chapter 1
Essentials of Using AutoLISP

Data Types in AutoLISP

Symbols

AutoLISP supports the following data types:

Symbols

Lists

Strings

Integers

Real numbers

File descriptors
AutoCAD entity names
AutoCAD selection sets
Subrs (built-in functions)

External Subrs (ADS functions)

Whenever AutoCAD asks you for input of a certain type (a point or a scale fac-
tor, for example), you can use an AutoLISP expression of that type, or an
AutoLISP function that returns that type of result, to supply the desired value.

AutoLISP uses symbols to store values. The following code example uses the
setq function to set the symbol pt 1 to the point value (1,2):

(setg ptl (1 2))

The terms “symbol” and “variable” are used interchangeably.

Essentials of Using AutolISP

Essentials of Using Autol ISP

Lists

Strings

Integers

Reals

AutoLISP uses lists extensively. They provide an efficient method of storing
numerous, related values in one symbol. Several AutoLISP functions provide a
basis for programming two-dimensional and three-dimensional graphics
applications; these functions return point values in the form of a list.

To deal with graphics coordinates, AutoLISP observes the following conven-
tions:

2D points are expressed as lists of two real numbers (X V), as in
(3.4 7.52)

The first value is the X coordinate and the second value is
the Y coordinate.

3D points are expressed as lists of three real numbers (X Y Z), as in
(3.4 7.52 1.0)

The first value is the X coordinate, the second value is the
Y coordinate, and the third value is the Z coordinate.

Strings can be of any length; memory for them is dynamically allocated.
Although string constants are limited to 132 characters, strings of unlimited
length can be created by using the strcat function to join strings together.

Integers are whole numbers entered without a decimal point. AutoLISP inte-
gers are 32-bit signed numbers with values between -2,147,483,648 and
+2,147,483,647. Although AutoLISP uses 32-bit values internally, those trans-
ferred between AutoLISP and AutoCAD are restricted to 16-bit values (i.e., you
cannot pass a value greater than +32767 or less than -32768 to AutoCAD). If
you are using a value that exceeds these limits, you can use the float function
to convert it to a real, since reals are passed as 32-bit values.

A real is a number containing a decimal point. Numbers between -1 and 1
must contain a leading zero. Real numbers are stored in double-precision float-
ing-point format, providing at least 14 significant digits of precision, even
though the AutoCAD command line area shows only 6 significant digits.

8 Data Types in AutoliSP

Chapter 1

File Descriptors

File descriptors are alphanumeric labels assigned to files opened by AutoLISP.
When an AutoLISP function needs to access a file (for reading or writing), its
label must be referenced. The example below opens the file myinfo.dat, making
it accessible to other functions for reading, and assigns the value of the file
descriptor to the symbol £11:

(setq fil (open "myinfo.dat" "r"}) might return <File: #34614>

Entity Names

An entity name is a numeric label assigned to entities in a drawing. It is actu-
ally a pointer into a file maintained by AutoCAD, from which AutoLISP can
find the entity’s database record and its vectors (if on screen). This label can be
referenced by AutoLISP functions to allow selection of entities for processing
in various ways. The following example sets the symbol e1 to the entity name
of the last entity entered into the drawing:

(setg el (entlast)) mightreturn <Entity name: 60000016>

Selection Sets

Selection sets are groups of one or more entities. As with the regular entity
selection process in AutoCAD, you can interactively add objects to, or remove
objects from, selection sets with AutoLISP routines. The following example
assigns the selection set consisting of the previously selected objects to the
symbol ssprev:

(setq ssprev (ssget "P")) mightreturn <Selection set: 1>

Subrs and External Subrs

All AutoLISP functions described in this manual are Subrs, which are built-in
subroutines. A Subr can be redefined with the defun function; however, its
original use will no longer be available to other routines (redefinition of a Subr
is not recommended). An External Subr is a subroutine defined by an ADS appli-
cation.

Lexical Conventions

AutoLISP input can take several forms. It can be entered from the keyboard at
the AutoCAD prompt line, read from an ASCII file, or read from a string vari-
able. In all cases, these conventions must be followed:

e Symbol names can consist of any sequence of printable characters except:

() L r n ’.

Lexical Conventions 9

Essentials of Using AutoLISP

The following characters terminate a symbol name or numeric constant:

() " ; (space) (end of line)

Expressions can span multiple lines.

Multiple spaces between symbols are equivalent to a single space.
Although you don't have to indent the lines of your AutoLISP programs,
doing so makes the structure of your functions more obvious. Using tabs
in AutoLISP is discouraged; typically they are read as spaces, but some plat-
forms might interpret them differently.

Symbol and function names (Subrs) are not case-sensitive in AutoLISP;
they can be entered uppercase or lowercase.

Integer constants can begin with an optional + or — character. As men-
tioned earlier, their range is -2,147,483,648 to +2,147,483,647.

Real constants can begin with an optional + or — character and consist of
one or more numeric digits, followed by a decimal point, followed by one
or more numeric digits (i.e., .4 is not recognized as a real; 0.4 is correct).
Similarly, 5. is not recognized as a real; 5.0 is correct. Reals can be expressed
in scientific notation, which has an optional e or E followed by the expo-
nent of the number (i.e., 0.0000041 is the same as 4.1e-6).

Literal strings are sequences of characters surrounded by double quotes.
Within quoted strings the backslash (\) character allows control characters
(or escape codes) to be included.

These are the codes currently recognized:

Table 1-1. Escape codes

COde Meanmg ::: —
\ \” \ character
L " character
\e Escape character
\n Newline character
N Return character
N Tab character
\nnn Character whose octal code is nnn

For instance, the following issues a prompt on a new line:

(prompt "\nEnter first point: ")

and

fthrific “WNZE

would display the “ + ” symbol on DOS systems.

10 Lexical Conventions

Chapter 1

¢ The single quote character can be used as shorthand for the quote func-
tion. Thus:

ifoe is equivalent to {quote foo)

* Comments can be included in AutoLISP program files. Comments begin
with a semicolon and continue through the end of the line. For example:
; This entire line is a comment
(setg area (¥ pi ¥ zr)) 5 Compute area of sircle.

i v

Any text within “ ;| ... |; ” is ignored; this allows comments to be
included within a line of code or extend for multiple lines. Following is an
example of an inline comment:

(setg tmode ; |some note herel; (getvar "tilemode"))

and this shows a comment that continues for multiple lines:

(setvar "orthomode" 1) ;|comment starts here
and continues to this line,
but ends way down herel|; (princ *\nORTHOMODE set On.")

The AutoLISP Evaluator

At the core of every LISP interpreter is the evaluator. The evaluator takes a line
of user input, evaluates it, and returns a result. The following is the process of
evaluation in AutoLISP:

* Integers, reals, strings, file pointers, and Subrs evaluate to themselves.
* Symbols evaluate to the value of their current binding.
e Lists are evaluated according to the first element of the list.
¢ If the first element of a list evaluates to a list (including nil), the list

is assumed to be a function definition and the function is evaluated
using the values of the remaining list elements as arguments.

e If the first element of a list evaluates to the name of an internal func-
tion (Subr), the remaining list elements are passed to the Subr as the
formal arguments and are evaluated by the Subr.

AutoLISP Expressions

All AutoLISP expressions have this form:
(function-name [arguments] . . .)

Each expression begins with a left parenthesis and consists of a function name
and 2n optional list of arguments to that function (each of which can itself be
an ¢ ssion). The expression then ends with a right parenthesis. Every
expre. .on returns a value that can be used by a surrounding expression; if
there is no surrounding expression, AutoLISP returns the value to AutoCAD.

The AutolISP Evaluator 11

Essentials of Using AutolLISP

If you enter an AutoLISP expression in response to the AutoCAD Command:
prompt, AutoLISP evaluates the expression and prints the result. The
AutoCAD Command: prompt then reappears. When printing real numbers,
AutoLISP displays up to 6 significant digits.

If an incorrect expression is entered or read from a file, AutoLISP might display
the following prompt:

n>

where n is an integer indicating how many levels of left parentheses remain
unclosed. If this prompt appears, you must enter n right parentheses to exit
from this condition. A common mistake is to omit a closing double quote (")
in a text string, in which case the right parentheses are interpreted as being
quoted and have no effect in changing n. To correct this condition, cancel the
function by entering (Cti)+(C) and reenter it correctly.

AutoLISP Variables

AutoLISP variables can be of four types: integer, real, point, and string. A vari-
able’s type is automatically attached to it based on the type of value assigned.
Variables retain their values until reassigned or until the current drawing ses-
sion has ended. You can name your variables anything you want, provided the
first character is alphabetic. The variable pi is preset to the value of n. You can
use it just like variables you define yourself.

You use the AutoLISP setq function to assign values to variables. This is the
format:

(setq variable—name value)

The setq function assigns the specified value to the variable whose name is
given. It also returns the value as its function result. If you use setq when
AutoCAD has issued a Command: prompt, it will set the variable and display
the value assigned. Note the parentheses surrounding this expression; they are
required. A few examples follow.

(setg k. 3)
{(sety = 3.875)
(setq layname "EXTERIOR-WALLS")

These expressions assign values to an integer, a real, and a string variable,
respectively. Point variables are more complicated, since they contain X, Y,
and (optionally) Z components. Points are expressed as lists of two or three
numbers surrounded by parentheses, as in the following:

(B85 28] a 2D point
(88.0 14.77 3.14) a 3D point

The first item in the list is the X component of the point; the second is the ¥
component; and the third (if present) is the Z component. You can use
another built-in function 1ist to form such lists.

(lamt 3. 875 1 .23)
(list 88:0 14,77 3.14)

12 The AutolISP Evaluator

Chapter 1

Thus, to assign particular coordinates to a point variable, you can use one of
the following expressions:

(eetg Pt (list 3.875 1.23))
(setqg pt (list 88.0 14.77 3.14))
{(setg pt (list abc 1.23))

The latter uses the value of variable abe as the X component of the point.

You can refer to X, Y, and Z components of a point individually, using three
more built-in functions called ecar, cadr, and caddr.

(car pt) Returns the X component of point variable ot
(cadr pt) Returns the Y component of point variable pt
(caddr pt) Returns the Z component of point variable pt

For example, suppose that variables pt 1 and pt 2 are set to points (1.0,2.0) and
(3.0,4.0), defining the lower-left and upper-right corners of a rectangle. We
can use the car and cadr functions to set variable pt3 to the upper-left cor-
net of the rectangle, by extracting the X component of pt1 and the ¥ compo-
nent of pt 2 as follows:

(setq, pt3- (list. (ear ptl) (cadr pt2)).)

The above expression would set pt 3 equal to point (1.0,4.0).

If you want to use the value of a variable as the response to a prompt from
AutoCAD, simply enter the name of the variable, preceded by an exclamation
point, !. Suppose, for example, that you've set variable abc to the value
14.88702. You could then enter labc any time you want to respond to a
prompt with the value 14.88702. For instance:

Column distance: labc

Similarly, if you want to begin drawing a line at point (1.0,4.0) and you've set
variable pt equal to that point, you can enter this:

Command: line
From point: !pt

Notes:

1. In order for expressions or variable references to be interpreted correctly,
the left parenthesis, (, or exclamation point, !, must be the first character
you enter in response to a prompt.

2. Since ordinary text strings can begin with ! or (, you must set the system
variable TEXTEVAL to 1 if you want to use a variable or expression to supply
the text string to such commands as TEXT and ATTDEF.,

3. You cannot use a variable reference to issue an AutoCAD command. For
example, if you set variable x to the string "line" and then enter Ix in
response to the AutoCAD Command: prompt, AutoCAD will simply dis-
play the value "1ine"; the LINE command will not be executed. The com—
mand function (discussed on page 98) executes AutoCAD commands from
within AutoLISP functions.

The AutolISP Evaluator 13

Essentials of Using AutoLISP

Defining Functions and Automatic Loading

You can save function definitions in files with an extension of .Isp and load
them, using the AutoLISP load function, described on page 133, or include
them in an acad.lsp file to be loaded automatically each time AutoCAD is
started. Loading a .Isp file causes evaluation of its expressions. Most commonly
a .Isp file uses the defun function to store groups of functions in the comput-
er’s memory for later execution (see the defun function on page 101).

If a function is defined with a name of the form ¢: xxx, it can be issued at the
AutoCAD prompt line in the same manner as a built-in AutoCAD command.
The following section describes this concept.

Important: You should consider the s: : function name prefix to be reserved.
To avoid conflicts with unrelated functions, use this prefix only for the special
function s: : STARTUP described on page 16.

C:XXX Functions—Adding Commands to AutoCAD

You can add new commands to AutoCAD by using defun to define functions
implementing those commands. To be used as AutoCAD commands, such
functions must adhere to the following rules:

1. The function must have a name of the form c:xxx (upper- or lowercase
characters). The C: portion of the name must always be present; the xxx
portion can be a command name of your choice. ¢: Xxxx functions can be
used to override built-in AutoCAD commands if those commands have
been undefined with the UNDEFINE command (see the UNDEFINE
command in the AutoCAD Reference Manual).

Note: In this case, C: is a special prefix that denotes a command line func-
tion; it is not a reference to a disk drive.

2. The function must be defined with a nil argument list (local symbols are
permitted; local symbols are discussed with the setq function on
page 150).

Example
The following function uses a Polyline to draw a square.

(defun C:PSQUARE (/ ptl pt2 pt3 pt4d len)
(setg ptl (gétpoint "Lower left corner: "))
(setg len (getdist ptl "Length of cone side: "))
(setg pt2 (polar ptl 0.0 len))
{setg pt3 (polar pt2 (/ pi 2.0) len))
(setg ptd (polar pt3 pi len))
(command "pline" ptl pt2 pt3 ptd "c")

)

Once loaded (with the load function) functions defined like this can be
invoked by simply entering the xxx part of the function name at the AutoCAD
prompt line. If Xxx is not a known command, AutoCAD tries calling the

14 Defining Functions and Automatic Loading

Chapter 1

AutoLISP function ¢:xxx with no parameters. For the sample C: PSQUARE
function, the command sequence looks like this:

Command: psquare
Lower left corner: Select a point.
Length of one side: Enter a distance.

The function then invokes the AutoCAD PLINE command and responds to its
prompts to draw the requested square.

Adding commands to AutoCAD in this manner is a very powerful feature of
AutoLISP. Once defined, the new command can use all the facilities afforded
by AutoLISP. Actual use of the new command does not require you to surround
the command name with parentheses, so this AutoLISP-implemented
command is used just like any other AutoCAD command.

A function defined in this manner can be issued transparently from within
any prompt of any built-in AutoCAD command, provided that the function
issued transparently does not call the command function. When issuing a
c:xxx defined command transparently, you must precede the XXX portion
witha“’” (i.e.,'PSQUARE). If you want to issue a transparent command while
a c:xxx command is active, you must precede it with a “ " ” (as with all com-
mands issued transparently).

When calling a function defined as a command from the code of another
AutoLISP function, you must use the whole name (i.e., (C:PSQUARE)).

Note: You typically can’t respond to prompts from an AutoLISP-implemented
command with an AutoLISP statement. However, if your AutoLISP routine
makes use of the initget function, arbitrary keyboard input is permitted
with certain functions; this can let an AutoLISP-implemented command
accept an AutoLISP statement as response. Also, the values returned by a
DIESEL expression can perform some evaluation of the current drawing and
return these values to AutoLISP. See chapter 8 of the AutoCAD Customization
Manual for information on the DIESEL String Expression Language.

Function Libraries—Automatic Loading

As you create a library of useful AutoLISP routines, you may want them to be
automatically loaded each time you start AutoCAD. If the acad.Isp file exists in
the AutoCAD library path, it is loaded automatically when you start AutoCAD
and each time you start a new drawing.

Another type of AutoLISP file that can be automatically loaded is a .mnl file.
These files typically contain AutoLISP routines required for the proper opera-
tion of a menu file (.mnu). When a menu file is loaded (either by starting a
drawing or issuing the MENU command), AutoCAD searches the directory con-
taining the newly loaded .mnu file for a .mnl file of the same filename. If a
matching .mnl file is found AutoCAD loads the AutoLISP code in that file after
loading the menu file (e.g., AutoCAD loads the file acad.mnl after loading the
acad.mnx compiled menu file).

If a menu file is loaded with the AutoLISP (command) function, its associated
.mnl file is not loaded until the entire AutoLISP routine has run to completion.

The acad.lsp and .mnl files are not required. If either or both exist, AutoCAD
loads the acad.lsp file first, then the associated .mmnl file.

The AutoCAD library path is searched in the following order:

Defining Functions and Automatic Loading 15

Essentials of Using AutoLISP

1. The current directory
2. The directory containing the current drawing file

3. The directories named by the ACAD environment variable (if this variable
has been specified)

4. The directory containing the AutoCAD program files

Your acad.lsp and .mnl files can define the desired AutoLISP functions directly,
or they can use the load function to load them from other files. The latter
method makes editing these files easier and reduces their size.

Following is an example of the possible contents of an acad. Isp or .mnl file (the
files requested by the following load function calls are assumed to be in the
library path):

(load "3darray") loads the file 3darray.Isp
(load "chgtext™) loads the file chgtext.Isp
(load "setup") loads the file setup.lsp
(load "new func") loads the file new_func.Isp
(princ) exits the file quietly

You can use these features to create a library of useful functions and ensure that
they are always present when you need them.

Note: You should not use the command function or any other function that
accesses the drawing database directly from an acad.lsp or .mnl file; since the
drawing is not fully initialized at this point, unpredictable results can occur.
These types of function calls can be included in a §: : STARTUP function.

To make your acad.lsp file execute a series of command statements automati-
cally after Joading a drawing, include in it a defun of the special function
S: :STARTUP.

S::STARTUP Function—Automatic Execution

Continued on page 17

If the user-defined function S: : STARTUP is included in the acad.lsp or .mmnl
file, it is called automatically (with no arguments) when you enter a new draw-
ing or open an existing drawing. Thus, you can include a defun of
S: :STARTUP in your acad.lsp file to perform any setup operations you want at
the start of an editing session.

16 Defining Functions and Automatic Loading

Chapter 1

Example

Suppose you wanted to override the standard AutoCAD QUIT and END com-
mands with versions of your own. You can do so with an acad.lsp file contain-
ing the following:

(defun C:QUIT ()
your definition
)
(defun C:END ()
your definition
)
(defun S::STARTUP ()
(command "undefine" "quit")
(command "undefine" "end")

Defining Functions and Automatic Loading 17

Before the drawing has been initialized, your new definitions for QUIT and
END are defined with the defun function; once the drawing has been fully ini-
tialized, the 8: : STARTUP function is called and the standard definitions of
QUIT and END are undefined.

Since an 8: : STARTUP function can be defined in many places (an acad.lsp file,
a .mmnl file, or any other AutoLISP file loaded from either of these) it is possible
to overwrite a previously defined s: : STARTUP function. The following exam-
ple shows one method of ensuring your startup function works in harmony
with others:

(defun mystartup ()
your startup function
)

(if s::startup
(setg s::startup (append S::startup ' ((mystartup))))
(defun s::startup () (mystartup))

Error Handling

}g"

If AutoLISP encounters an error during evaluation, it prints a message in this
form

Error: text

where text is a description of the error. If the *error* function is defined
(non-nil), AutoLISP executes that function (with text passed as its single argu-
ment) instead of printing the message. If *error* is not defined or is bound
tonil, AutoLISP evaluation stops and displays a traceback of the calling func-
tion and its callers up to 100 levels deep.

A code for the last error is saved in the AutoCAD system variable ERRNO, where
it can be retrieved using the getvar function. For more information and
examples, see “Error Handling” on page 183. See the error messages in appen-
dix D and the error codes in appendix C. The *error* function is described
on page 113.

You can also warn the user about error conditions by displaying an alert box, a
small dialogue box containing a message supplied by your program. To display
an alert box, call the alert function. Alert boxes are a somewhat more
“heavy-handed” way of warning the user, since the user has to push the OK
button before continuing.

Example:
The following call to alert displays the alert box shown below.

(alert "File not found")

See page 90 for more information on the alert function.

Chapter 2

General Utility Functions

AutoLISP provides various functions for examining the drawing currently
loaded, modifying it, interacting with the AutoCAD user, and so on. This
chapter is a general description of these functions, many of which have similar
functions in ADS. It introduces the functions, describes how they can be used
in conjunction with other functions, and provides code examples of their use.
For specific details on calling a particular function, refer to the catalog in
chapter 4. '

Functions that handle entities, selection sets, and symbol tables are described
in chapter 3.

AutoCAD Queries and Commands

The functions described in this section provide direct access to AutoCAD com-
mands and drawing services. Their behaviour depends on the current state of
AutoCAD system and environment variables, and on the drawing that is cur-
rently loaded.

Command Submission

The most general of the AutoLISP functions that access AutoCAD is command.
This function sends an AutoCAD command along with other related informa-
tion directly to the AutoCAD Command: prompt.

The command function has a variable-length argument list. These arguments
must correspond to the types and values expected by that command’s prompt
sequence: these may be strings, real values, integers, points, entity names, or
selection set names. Data such as angles, distances, and points can be passed
either as strings (as the user might enter them) or as the values themselves (as
integer or real values, or as point lists). An empty string ("") is equivalent to
entering a space or («]) on the keyboard.

There are some restrictions on the commands that can be invoked with the
command function; see page 98 for details.

General Utility Functions

21,

General Utility Functions

Example
The following code fragment shows a few representative calls to command.

(command “"circle" "0,0" "3,3")
(command "thickness" 1)

(setg pl (1.0 1.0 3.0))

(setg rad 4.5)

(command "circle" pl rad)

Provided AutoCAD is at the Command: prompt when these functions are
called, AutoCAD performs the following actions:

1. Draws a circle centred at (0.0,0.0) and passes through (3.0,3.0).

2. Changes the current thickness to 1.0.

3. Draws another (extruded) circle centred at (1.0,1.0,3.0) with a radius of
4.5.

Note that the first call to command passes points to the CIRCLE command as
strings, and the second passes an integer to the THICKNESS command. The last
call to command uses a 3D point and a real (floating-point) value, both of
which are stored as variables and passed by reference to the CIRCLE command.

Pausing for User Input

If an AutoCAD command is in progress and the predefined symbol paUSE is
encountered as an argument to command, the command is suspended to allow
direct user input (usually point selection or dragging). This is similar to the
backslash pause mechanism provided for menus.

If you issue a transparent command while a command function is suspended,
the command function remains suspended. Thus, users can 'ZOOM and 'PAN all
they want while at a command pause. The pause remains in effect until
AutoCAD gets valid input and no transparent command is in progress. For
example:

(command "¢ircle™ "5,5" palise "liner #5,5" "7 Gn mnn)

begins the CIRCLE command, sets the centre point at (5,5), and then pauses to
let the user drag the circle’s radius on screen. When the user picks the desired
point (or types in the desired radius), the function resumes, drawing a line
from (5,5) to (7,5).

Menu input is not suspended by an AutoLISP pause. If a menu item is active
when the command function pauses for input, that input request can be satis-
fied by the menu. If you want the menu item to be suspended as well, you
must provide a backslash in the menu item. When valid input is found, both
the command function and the menu item resume.

Passing Pick Points to AutoCAD Commands

Some AutoCAD commands (such as TRIM, EXTEND, and FILLET) require the
user to specify a pick point as well as the entity itself. To pass such pairs of entity
and point data via the command function without the use of a pAUSE, you must
first obtain these values and store them as variables. Points can be passed as
strings within the command function or be defined outside the function and
passed as variables, as this example shows.

22 AutoCAD Queries and Commands

Chapter 2

Example

The following code fragment shows one method of passing an entity name
and a pick point to the command function.

(command "eircler »5,5" =2") Draws circle
{(cemmand "line" "3,5" "7,5" "n) Draws line

(setqg el (entlast)) Gets last entity name
(setg pt ‘(5 7)) Sets point pt
(command "trim" el "" pt "") Performs trim

Provided AutoCAD is at the Command: prompt when these functions are
called, AutoCAD performs the following actions:

1. Draws a circle centred at (5,5) with a radius of 2.
2. Draws a line from (3,5) to (7,5).

3. Creates a variable e1 that is the name of the last entity added to the data-
base. See chapter 3 for more discussion on entities and entity functions.

4. Creates a variable pt thatis a point on the circle (this point selects the por-
tion of the circle to be trimmed).

5. Performs the TRIM command by selecting the entity el, and by selecting
the point specified by pt.

System and Environment Variables

A pair of functions, getvar and setvar, let AutoLISP applications inspect and
change the value of AutoCAD system variables. These functions use a string to
specify the variable name (in either uppercase or lowercase). The setvar func-
tion specifies a value of the type that the system variable expects. It is impor-
tant to remember that AutoCAD system variables come in various types: inte-
gers, real values, strings, 2D points, and 3D points. Values supplied as argu-
ments to setvar must be of the expected type; if an invalid type is supplied,
an AutoLISP error is generated. See appendix A of the AutoCAD Reference
Manual for a list of the system variables and their types.

Example

The following code fragment ensures that subsequent FILLET commands will
use a radius of at least one:

(1f (< (getvar "filletrad") 1)
(setvar "filletrad™ 1)

)

An additional function getenv provides AutoLISP routines access to the cur-
rently defined operating system environment variables.

AutoCAD Queries and Commands 23

General Utility Functions

File Search

The findfile function lets an application search for a file of a particular
name. The application can specify the directory to search, or it can use the cur-
rent AutoCAD library path.

Example

In the following code fragment, £indfile searches for the requested filename
according to the AutoCAD library path:

(setg refname "refc.dwg")
(setg fil (findfile refname))
(i £21
(setq refname fil)
(princ (strecat "\nCould not find file " refname ". "))

)

If the call to £ind£ile is successful, the variable refname is set to a fully qual-
ified pathname string, such as:

"/home/work/ref/refc.dwg"

Note: When specifying a DOS pathname, you must precede the backslash
“ \ "with a backslash (“ \\ ") to be recognized by AutoLISP (see “Lexical Con-
ventions” on page 9). Alternatively you can use the slash character “ / " asa
directory separator.

The getfiled function displays a dialogue box containing a list of available
files of a specified extension type in the specified directory. This gives AutoLISP
routines access to the AutoCAD Get File dialogue, promoting a uniform
appearance with other AutoCAD commands using this feature.

A call to get £iled takes four arguments which determine the appearance and
functionality of the dialogue box. The application must specity the following
string values, each of which can be nil if desired: a title, which is placed at the
top of the dialogue; a default filename, displayed in the edit box at the bottom
of the dialogue; and an extension type, which determines the initial files pro-
vided for selection in the list box. The final argument is an integer value that
specifies how the dialogue interacts with selected files.

Example

This simple routine uses get£filed to let you view your directory structure
and select a file:

(defun C:DDIR()

(setq dfil (getfiled "Directory Listing"™ "" "" 2))
(princ (strcat "\nVariable 'dfil' set to selected file "™ dfil "."))
(pring)

This can be a very useful utility command. The variable afil is set to the file
you select, which can then be used by other AutoLISP functions or as a
response to a command line prompt for a filename; to use this variable in
response to a command line prompt you would enter !dfil.

Note: You can't use !dfil in a dialogue box; it is valid only at the command line.

See also: Page 118 for a detailed explanation of the get £iled function.

24 AutoCAD Queries and Commands

Chapter 2

Object Snap

The osnap function finds a point via one of the AutoCAD Object Snap modes.
The snap modes are specified in a string argument.

Examples
The following call to osnap looks for the midpoint of an entity near pt1:

(setg pt2 (ocsnap ptl "midp"))

The following call looks for either the midpoint, endpoint, or centre of an
entity nearest pt1:

(setg pt2 (osnap ptl "midp,endp,center"))

In both examples, pt2 is set to the snap point if one is found that fulfills the
osnap requirements. Otherwise pt2 is set to nil.

Important: The system variable APERTURE determines the allowable proximity
of a selected point to an entity when using Object Snap.

Geometric Utilities

(setqg
(setqg
(setqg
(setqg

(setqg

(setg

A group of functions allow applications to obtain geometric information. The
distance function finds the distance between two points, angle finds the
angle in radians between a line and the X axis (of the current UCS), and polar
finds a point via polar coordinates (relative to an initial point). The inters
function finds the intersection of two lines.

Note: Unlike osnap, the functions in this group simply calculate the point,
line, or angle values, and do not actually query the current drawing.

Examples

The following code fragment shows some simple calls to the geometric utility
functions:

ptl (3.0 6.0 0.0))

ptZ * (5.0 2.0 0.0))

base © 0107w 0 8.0

rads (angle ptl pt2)) Angle in XY plane of current UCS
(value is returned in radians)

len (distance ptl pt2)) Distance in 3D space

endpt (pelar base rads len))

The call to polar sets endpt to a point that is the same distance from (1,7) as
ptl is from pt2, and at the same angle from the X axis as the angle between
ptl and pt2.

Geometric Utilities 25

General Utility Functions

Text Box Utility Function

The textbox function returns the diagonal coordinates of a box that encloses
a Text entity. It takes a list of the type returned by entget (an association list
of group codes and values) as its single argument. This list can contain a com-
plete association list description of the Text entity or just a list describing the
text string. Entity definitions and association lists are discussed in greater
detail in the following chapter.

The points returned by textbox describe the bounding box of the Text entity
as if its insertion point were located at (0,0,0) and its rotation angle were 0. The
first list returned is generally the point (0.0 0.0 0.0) unless the Text entity is
oblique, vertical, or contains letters with descenders (such as g and p). The
value of the first point list specifies the offset from the text insertion point to
the lower-left corner of the smallest rectangle enclosing the text. The second
point list specifies the upper-right corner of that box. The returned point lists
always describe the bottom-left and upper-right corners of this bounding box,
regardless of the orientation of the Text being measured.

Examples

This example shows the minimum allowable entity list that textbox accepts.
Since no additional information is provided, textbox uses the current
defaults for text style and height.

Command: (textbox '((1 . "Hello world"))) (<)
((0.0 0.0 0.0) (2.80952 1.0 0.0))

This example demonstrates one method of providing the textbox function
with an entity list.

Command: dtext

Justify/Style/<Start point>: 1,1

Height <1.0000>:

Rotation angle <0>:

Text: test

Text:

Command: (setq e (entget (entlast)))

((-1 . <Entity name: 6000001c>) (0. "TEXT") (8 . "0")
(101.01.00.0) (40 . 1.0) (1 . "test") (50 . 0.0)

(41 .1.0)(51.0.0) (7 . "STANDARD") (71 . 0) (72 . 0)
(11 0.0 0.00.0) (210 0.0 0.0 1.0) (73 . 0))
Command: (textbox €)

(0.0 0.0 0.0) (0.8 0.2 0.0))

26 Geometric Utilities

pt2 =1.0,0.0

origin: (0,0) —\

Bl =
-0.5,-20.0

—|><r'-|—||—:t>O——|;0r"|

Chapter 2

Figure 2-1 shows the results of applying textbox to a Text entity with a height
of 1.0. The figure also shows the baseline and insertion point of the text.

pEZ

top right:
'[/ﬁ @< (5.5,1.0)
l‘\ ’/‘/“ \ 7l
‘. f I
Tk
origin: (0,0) —a -\¥' baq— baseline
®

[]
ptl
\7 bottom left: (0,-0.333333)

Figure 2-1. Points returned by textbox

If the text is vertical or rotated, pt1 and pt2 are still in left-to-right,
bottom-to-top order; the bottom-left point might have negative offsets, if nec-
essary.

Figure 2-2 shows the point values (pt1 and pt2) that textbox returns for sam-
ples of vertical and aligned text. In both samples, the height of the letters is
1.0 (for the aligned text, the height is adjusted to fit the alignment points).

’/—~ pt2=29.21954,1.38293,0.0

gm

(10,3)

r (1.1)
e alignment points entered when text was created

Figure 2-2. Vertical and aligned text

When using vertical text styles, the points are still returned in left-to-right,
bottom-to-top order as they are for horizontal styles, so the first point list will
contain negative offsets from the text insertion point.

Regardless of the text orientation or style, the points returned by textbox are
such that the text insertion point (group code 10) directly translates to the ori-
gin point of the Entity Coordinate System (ECS). This point can be referenced
when translating the coordinates returned from textbox into points that
define the actual extents of the text.

Following are two sample routines that use textbox to place a box around
selected text regardless of its orientation.

Geometric Utilities 27

General Utility Functions

Examples

This routine uses the textbox function to draw a box around a selected Text

entity.
(defun C:TBOX (

/ textent tb 11 ur ul 1r)

(setg textent (car (entsel "\nSelect text:
(command "ucs" "Entity" textent)
(setg tb (textbox (list (cons -1 textent)))
11 (car tb)
ur (cadr tb)
ul (list (car 11) (cadr ur))
12 (Aigt (Cay Ur) - (cads 1)
)
(command "plime™ 11 1r ux wl "Close")
(command "ues" "p")
(princ)

31D

This routine accomplishes the same task as the previous routine by performing
the geometric calculations with the sin and cos AutoLISP functions. The
result is correct only if the current UCS is parallel to the plane of the Text

entity.

(defun C:TBOX2 (/ textent ang sinrot cosrot tl1 t2 p0 pl p2 p3 p4)

(setg textent (entget (car
(setg p0 (cdr (assoc 10 textent))
ang (cdr (assoc 50 textent)
sinrot (sin ang)
cosrot (cos ang)
tl (car (textbox textent))
t2 (cadr (textbox textent))
pl sk (% (ear wl)
~= (% tear ©k)
(+ (cadr p0)
+ #F [cay £1)

(
(
pZ (list (+ (car p0)
(
(
{

— (% (@ar t2)

{(+ (gadr p0)
Y o il 52

3 | (lisk - (+ (Ear po)
(= A% (EaE 2

(+ (cadr p0)
(' * lear’ £2)

pd (Iist. (+ tear pl)
(— (= Yeaxr tl)

(+ (cadr p0)
(' (& (BaritT)

)
(command "pline" pl p2 p3 p4d "c")
(princ)

(entsel "\nSelect text:

)

cosrot) (*

sinrot) (*

cosrot) (*

sinroL), (*
cesrat) A¥
sinrokt) (*
clelspaoysy M (k]

sinFot) (*

"))

(cadz £1) sinrek)))

{eadr tl) wosret))))
(cadr tl) sinrot)))
(cadr tl) cosrot))))
(cadr t2) sinrot)))
(cadr t2) cosrot))))
(cadr t2) sinrot)))

(cadr t2) cosrot))))

28

Geometric Utilities

Chapter 2
Getting User Input

Several functions enable an AutoLISP application to interactively request data
from the AutoCAD user.

The User-input (getxxx) Functions

Each user-input getxxx function pauses for the user to enter data of the indi-
cated type and returns the value entered. The application can specify an
optional prompt to display before the function pauses.

Table 2-1. Allowable input to the getxxx user-input functions

Function name | Typeofuserinput

getint An integer value from the prompt line

getreal A real or integer value from the prompt line

getstring A string from the prompt line

getpoint A point value from the prompt line or selected from the screen
getcorner A point value (the opposite corner of a box) from the prompt line

or selected from the screen

getdist A real or integer value (a distance) from the prompt line or deter-
mined by selecting points on the screen

getangle An angle value (in the current angle format) from the prompt line
or determined by selecting points on the screen

getorient An angle value (in the current angle format) from the prompt line
or determined by selecting points on the screen

getkword A pre-defined keyword or its abbreviation from the prompt line

Note: The getvar and getenv functions are not user-input getxxx func-
tions; they do not pause for user input.

The functions getint, getreal, and getstring all pause for user input, of
the appropriate type, from the AutoCAD prompt line. Their built-in error
checking mechanisms only allow them to return a value of the same type as
that requested.

The getpoint, getcorner, and getdist functions pause for user input from
the prompt line or from points selected on the graphics screen. These func-
tions also filter out inappropriate responses. The getpoint and getcorner
functions return 3D point values and getdist returns a real value.

Both getangle and getorient pause for input of an angle value from the
prompt line or as defined by points selected on the graphics screen. For the
getorient function, the zero angle is always to the right: “east” or
“3 o’clock.” For getangle, the zero angle is the value of ANGBASE, which can
be set to any angle. Both getangle and getorient return an angle value (a
real) in radians measured counterclockwise from a base (zero angle), for
getangle equal to ANGBASE, and for getorient to the right. In response to
these functions, the user can either enter a response at the prompt line or
select points on screen.

Getting User Input 29

General Utility Functions

Suppose ANGBASE is set to 90 degrees (north) and ANGDIR is set to 1 (clockwise
direction for increasing angles). The following table shows what getangle
and getorient return (in radians) for representative input values (in degrees).

Table 2-2. Possible return values from getangle and getorient ANGBASE=90
e L | : g — ANGDIR=1
e R pur (ks
L L ingliesiy :
0 0.0 1.5708 2
N input ! \
90 1.5708 3.14159 angn’e=~90< —
180 3.14159 | 4.71239 angle=50
input
90 4.71239 0.0 angle=180

The getangle function honours the settings of ANGDIR and ANGBASE. Thus
you might use getangle to obtain a rotation amount for a Block insertion,
since input of zero degrees always returns zero radians. The getorient func-
tion honours only ANGDIR. Thus you should use getorient to obtain such
angles as the baseline angle for a Text entity. For example, given the above set-
tings of ANGBASE and ANGDIR, for a line of text created at an angle of zero,
getorient returns an angle value of 90.

The user-input functions take advantage of the error-checking capability of
AutoCAD. Trivial errors (such as entering only a single number in response to
getpoint) are trapped by AutoCAD and aren’t returned by the user-input
function. A prior call to initget, discussed later, provides additional filtering
capabilities, lessening the need for extensive error checking.

The getkword function pauses for input of a keyword or its abbreviation. Key-
words must be defined with the initget function before the call to
getkword. All user-input functions (except getstring, for the obvious rea-
son) can accept keyword values in addition to the values they normally return,
provided initget has been called to define the keywords.

All user-input functions allow for an optional prompt argument. We recom-
mend using this argument, rather than a prior call to the prompt or princ
functions, to provide an application’s prompt for user input. If a prompt argu-
ment is supplied with the call to the user-input function, that prompt is re-
issued in the case of invalid user input. If no prompt argument is supplied and
the user enters incorrect information, the following message appears at the
AutoCAD prompt line:

Try again:

This can be confusing since the original prompt might have scrolled out of the
command prompt area.

Important: The AutoCAD user cannot typically respond to a user-input func-
tion by entering an AutoLISP expression. If your AutoLISP routine makes use
of the initget function, arbitrary keyboard input is permitted to certain
functions that can allow an AutoLISP statement as response to an AutoLISP-
implemented command.

30 Getting User Input

Chapter 2

Control of User-input Function Conditions

The initget function establishes various options for use by the next entsel,
nentsel, nentselp, 0OI getxxx function (except getstring, getvar, and
getenv). This function accepts two arguments, bits and string, both of
which are optional. The bits argument specifies one or more control bits that
enable or disable certain input values to the following user-input function call.
The string argument can specify keywords that the following user-input
function call will recognize.

Note: The control bits and keywords established by initget apply only to the
next user-input function call; they are automatically discarded immediately
afterward. The application doesn’t have to call initget a second time to clear
any special conditions.

Input Options for User-input Functions

The value of the bits argument restricts the types of user input to the follow-
ing user-input function call. This reduces error checking by forcing the user to
enter the desired type of information. These are some of the available bit set-
tings: 1, disallows null input; 2, disallows input of O (zero); 4, disallows nega-
tive input. If these bit values are used with a following call to the getint func-
tion, the user is forced to enter an integer value greater than zero.

To set more than one condition at a time, simply add the values together (in
any combination) to create a bits value between 0 and 255. If bits is not
included or is set to zero, none of the control conditions apply to the next
user-input function call. For a complete listing of available bit settings, see
page 128.

Example

(Ifitget =+ 1 2 4))
(getint "\nHow old are you? ")

This sequence requests AutoCAD to obtain the user’s age. AutoCAD automat-
ically displays an error message and repeats the prompt if the user attempts to
enter a negative or zero value, type («) only, or enter a string (the getint func-
tion itself rejects any attempt to enter a value that is not an integer).

Keyword Options

The optional string argument specifies a list of keywords that will be recog-
nized by the next user-input function call. The meaning of the keywords and
the action to perform for each is the responsibility of the AutoLISP applica-
tion.

The initget function allows keyword abbreviations to be recognized in addi-
tion to the full keywords. There are two methods for abbreviating keywords;
both are discussed in the section “Keyword Specifications,” on page 130. The
user-input function returns a predefined keyword if the input from the user
matches the spelling of a keyword (not case-sensitive), or if the user enters the
abbreviation of a keyword.

Getting User Input 31

General Utility Functions

Arbitr

(defun
o)
(se
k= o

Example

The following user-defined function shows a call to getreal preceded by a
call to initget that specifies two keywords. The application checks for these
keywords and sets the input value accordingly:

(defun C:GETNUM (/ num)
(initget 1 "Pi Two-pi")

(setg num (getreal "Pi/Two-pi/number: "))
(cond ({eqg num "Pi") pi)

((eg num "Two—pi™) (* 2.0 pi))

(T num)

)

This initget call inhibits null input (bits = 1) and establishes a list of two
keywords, "Pi" and "Two-pi". The getreal function is then used to obtain
a real number, issuing the prompt:

Pi/Two-pi/number:

The result is placed in local symbol num. If the user enters a number, that num-
ber is returned by C:GETNUM. However, if the user enters the keyword Pi (or
simply P), getreal returns the keyword Pi. The cond function detects this
and returns the value of r in this case. The Two-pi keyword is handled simi-
larly.

Note: You can also use initget to enable entsel, nentsel, and nentselp
to accept keyword input (normally these functions expect the user to select an
entity by picking a single point). For more information on these functions, see
“Entity Name and Data Functions” on page 52, and the function descriptions
on page 110 and page 138.

ary Keyboard Input

The initget function also allows arbitrary keyboard input to most of the
getxxx functions. This input is passed back to the application as a string. An
application using this facility can be written to permit the user to call an
AutoLISP function at a get xxx function prompt.

Examples

These functions show a method for allowing AutoLISP response to a get xxx
function call:

CLARBENTRY (ptl) Defines the function
itget 128) Sets arbitrary entry bit
tg ptl (getpoint "\nPoint: ")) Gets value from user
(= 'STR (type ptl)) Ifit's a string value
(setg ptl (eval (read ptl))) convert it to a symbol and try
evaluating it as a function
ptil else, just return the value

32

Getting User Input

n

Chapter 2

{defun ref [)
{setvar "LASTPOINT" (getpoint "\nReference point: "))
(getpoint "\nNext peint: " (getvar "LASTPOINT"))

If the C: ARBENTRY and REF functions are both loaded into the drawing, then
the following command sequence is perfectly acceptable.

Command: arbentry

Point: (ref)

Reference point: Select a point
Next point: @1,1,0

Conversions

The functions described in this section are utilities for converting data types
and units.

For a sample function that converts from degrees to radians see the user
defined dtr function on page 222.

String Conversions

The functions rtos (real to string) and angtos (angle to string) convert
numeric values used in AutoCAD to string values that can be used in output
or as textual data. The rtos function converts a real value and angtos con-
verts an angle. The format of the result string is controlled by the value of
AutoCAD system variables: the units and precision are specified by LUNITS and
LUPREC for real (linear) values, and by AUNITS and AUPREC for angular values.
For both functions, the dimensioning variable DIMZIN controls how leading
and trailing zeros are written to the result string.

The following code fragments show some calls to rtos and the values
returned (assuming the DIMZIN variable equals zero). Precision (the third argu-
ment to rtos) is set to 4 places in the first call and 2 places in the others.

(setqg x 17.5)
(setq str "\nValue formatted as ")

(setg fmtval (rtos = 1 4)) Mode 1 = scientific

(princ (strcat str fmtval)) returns Value formatted as 1.7500E+01
(setg fmtval (rtos x 2 2)) Mode 2 = decimal

(pring "(strcet str fmtwal)) returns Value formatted as 17.50
(setg fmtval (rtos x 3 2)) Mode 3 = engineering

(princ (strecat str fmtval)) returns Value formatted as 1'-5.50"
(setg frnitval (rtos x 4 2)) Mode 4 = architectural

(princ (strcat str fmtval) returns Value formatted as 1°-5 1/2"
(setq fmtval (rtes = 5 2)) Mode 5 = fractional

(princ (strcat str fmtval)) returns Value formatted as 17 1/2

Conversions 33

General Utility Functions

{digtef "1 /7500017 1)
(diskeE "L7 ., 50" Z)

(distof "1'-5.50\"" 3)

(disto

(distpf w17 L/2% 5)

(setqg

Note: When the UNITMODE system variable is set to one, specifying that units
are displayed as they would be entered, the string returned by rtos differs for
engineering (mode equals 3), architectural (mode equals 4), and fractional
(mode equals 5) units. For example, the first two lines of the previous sample
output would be the same, but the last three lines would appear as follows:

Value formatted as 1°5.50"
Value formatted as 1'5-1/2"
Value formatted as 17-1/2

You should note that since the angtos function takes the ANGBASE system
variable into account, the code

(angtos (getvar "angbase"))

always returns "0".

Thus there is no AutoLISP function that returns a string version (in the current
mode/precision) of either the amount of rotation of ANGBASE from true zero
(East), or an arbitrary angle in radians.

To find the amount of rotation of ANGBASE from AutoCAD zero (East) or the
size of an arbitrary angle, you can do one of the following:

1. Add the desired angle to the current ANGBASE, check to see if the absolute
value of the result is greater than 2, subtract 2r if it is (or add 2r if the
result is negative), and then use the angtos function on the result.

2. Store the value of ANGBASE in a temporary variable, set ANGBASE to 0, eval-
uate the angtos function, and then set ANGBASE back to its original value.

Subtracting the result of (angtos 0) from 360 degrees (2rn radians or
400grads) also yields the rotation of ANGBASE from zero.

The distof function is the complement of rtos, so the following calls, which
use the strings generated in the previous examples, all return the same value,
17.5 (note the use of the backslash with modes 3 and 4).

Mode 1 = scientific
Mode 2 = decimal
Mode 3 = engineering
i e R A L) Mode 4 = architectural
Mode 5 = fractional

The following code fragments show similar calls to angtos and the values
returned (still assuming that DIMZIN equals zero). Precision (the third
argument to angtos) is set to 0 places in the first call, 4 places in the next three
calls, and 2 places in the last.

ang 3.1415%) str2 "\nAngle formatted as ")

(setg fmtval (angtos ang 0 0))
(princ (strcat str2 fmtval))

(setg fmtval (angtos ang 1 4))
(princ (strcat str2 fmtval))

Mode 0 = degrees
returns Angle formatted as 180

Mode 1 = deg/min/sec
returns Angle formatted as 180d0’0"

34

Conversions

Chapter 2

(setqg fmtval (angtos ang 2 4) Mode 2 = grads

(princ (strecat str2 fmtval)) returns Angle formatted as 200.0000g
(setqg fmtval (angtos ang 3 4) Mode 3 = radians

(princ (streat str2 fmtval)) returns Angle formatted as 3.1416r
(getqg fmtval (angtos ang 4 2) Mode 4 = surveyor’s

(princ (streat str2 fmtval)) returns Angle formatted as W

Note: The UNITMODE system variable also affects strings returned by angtos
when it returns a string in surveyor’s units (mode equals 4). If UNITMODE
equals zero, the string returned can include spaces (for example, "N 45d E");
if UNITMODE equals one, the string contains no spaces (for example,
"N45AE").

The angtof function complements angtos, so the following calls all set the
result argument to the same value, 3.14159.

(angtof "180" 0) Mode 0 = degrees
(angtof "180d070\"" 1) Mode 1 = deg/min/sec
(angtof "200.0000g" 2) Mode 2 = grads
(EhgEeE "3 14159:" 3) Mode 3 = radians
tangtef “W" 49 Mode 4 = surveyor’s

Reminder: When you have a string specifying a distance in feet and inches or
an angle in degrees, minutes, and seconds, you must use a backslash (\) to es-
cape the double quote symbol (") so that it doesn’t look like the end of the
string. The previous examples of angtof and distof demonstrate this.

Real-world Units

The file acad.unt defines various conversions between real-world units such as
miles/kilometres, Fahrenheit/Celsius, and so on. The function cvunit takes a
value expressed in one system of units and returns the equivalent value in
another system. The two systems of units are specified by strings containing
expressions of units defined in acad.unt (see chapter 2 of the AutoCAD
Customization Manual for more information about real-world units).

Example

If the current drawing units are engineering or architectural (feet and inches),
the following routine converts a user-specified distance of inches into metres:

(defun C:I2M (/ eng_len metric_len eng metric)
(princ "\nConverting inches to metres. ")
(setg eng_len (getdist "\nEnter a distance in inches: "))

(getg metric_len (cvunit eng_len "inches" "meters"))

(setqg eng (rtos eng_len 2 4) metrie (rtos metric_len 2 4))
(princ (streat "\n\t" eng " inches = " metric " metres."))
(prine)

Conversions 35

General Utility Functions

The evunit function will not convert between units whose dimensions are
incompatible, such as an attempt to convert inches into grams.

Coordinate System Transformations

The trans function translates a point or a displacement from one coordinate
system into another. It takes a point argument, pt, that can be interpreted as
either a three-dimensional (3D) point or a 3D displacement vector, distin-
guished by a displacement argument called disp. The disp argument must be
nonzero if pt is to be treated as a displacement vector; otherwise, pt is treated
as a point.

A from argument specifies the coordinate system in which pt is expressed,
and a to argument specifies the desired coordinate system. The following list
describes the AutoCAD coordinate systems that can be specified by the from
and to arguments: ‘

WCS World Coordinate System: the “reference” coordinate system.
All other coordinate systems are defined relative to the WCS,
which never changes. Values measured relative to the WCS are
stable across changes to other coordinate systems.

ucs User Coordinate System: the “working” coordinate system.
The user specifies a UCS to make certain drawing tasks easier
(or, in some cases, possible at all). All points passed to
AutoCAD commands, including those returned from AutoLISP
routines and external functions, are points in the current UCS
(unless the user precedes them with a * at the Command:
prompt). If you want your application to send coordinates in
the WCS, ECS, or DCS to AutoCAD commands, you must first
convert them to the UCS by calling the trans function.

ECS Entity Coordinate System. Point values returned by entget
are expressed in this coordinate system, relative to the entity
itself; such points are usually converted into the WCS, current
UCS, or current DCS, according to the intended use of the
entity. Conversely, points must be translated into an ECS
before they are written to the database via entmod or
entmake.

DCs Display Coordinate System. The coordinate system into which
objects are transformed before they’re displayed. The origin of
the DCS is the point stored in the AutoCAD system variable
TARGET and its Z axis is the viewing direction. In other words,
a viewport is always a plan view of its DCS. These coordinates
can be used to determine where something appears to the
AutoCAD user.

When the from and to integer codes are 2 and 3, in either
order, then 2 indicates the DCS for the current model space
viewport, and 3 indicates the DCS for paper space (PSDCS).
When the 2 code is used with an integer code other than 3 (or
another means of specifying the coordinate system), then it is
assumed to indicate the DCS of the current space, whether that
is paper space or model space, and the other argument is also
assumed to indicate a coordinate system in the current space.

36 Coordinate System Transformations

Chapter 2

PSDCS Paper Space DCS. This coordinate system can be transformed
only to or from the DCS of the currently active model space
viewport. This is essentially a 2D transformation, where the X
and Y coordinates are always scaled and are offset if the disp
argument is zero. The Z coordinate is scaled, but is never trans-
lated: it can thus be used to find the scale factor between the
two coordinate systems. The PSDCS (integer code 2) can only
be transformed into the current model space viewport: if the
from argument equals 3, the to argument must equal 2, and
vice versa.

Both the fromand to arguments can specify a coordinate system in any of the
following ways:

e An integer code that specifies the WCS, current UCS, or current DCS (of
either the current viewport or paper space).

e An entity name, as returned by one of the entity name or selection set
functions described in chapter 3. This specifies the ECS of the named
entity.

For planar entities, the ECS can differ from the WCS, as described in chap-
ter 11 of the AutoCAD Customization Manual. If the ECS does not differ,
conversion between ECS and WCS is an identity operation.

* A 3D extrusion vector is another method of specifying an entity’s ECS.
Extrusion vectors are always represented in World coordinates; an extru-
sion vector of (0,0,1) specifies the WCS itself.

Table 2-3. Coordinate system codes

"Coe | Coordmamymem

el

0 World (WCS)
1 User (current UCS)
2 Display:

DCS of current viewport when used with code 0 or 1
DCS of current model space viewport when used with code 3

3 Paper space DCS, PSDCS (used only with code 2)

Example
The following example translates a point from the WCS into the current UCS:

(setd pt 7 (1.072.0 3.8))
(setg cs from 0) WCSs
(setg es_to 1) ucs
disp = 0 indicates that pt is a point:
(trans pt cs from es to 0)

If the current UCS is rotated 90 degrees counterclockwise around the World Z
axis, the call to trans returns a point (2.0,~1.0,3.0). On the other hand, if
trans is called as follows:

(Erang pt €s te es _from) thevesultils (-2.0,1.0, 3.0)

Coordinate System Transformations 37

General Utility Functions

Display Control

AutoLISP includes several functions for controlling the AutoCAD display,
including both text and graphics screens. Some of these functions also prompt
for, or depend on, input from the AutoCAD user.

Interactive Output

The basic output functions are prompt, pring, prinl, and print. The
prompt function displays a message at the AutoCAD prompt line and returns
nil; this should only be used when displaying a message to the screen. The
pring, prinl, and print functions all display an expression (not necessarily
astring) at the prompt line and return the expression, and optionally can send
output to a file. The differences are as follows: prine prints control characters
without expansion, while prinl and print expand characters with a leading

backslash (\); print places a newline character before the expression and a
space afterward.

The size of a string displayed by prompt should not exceed the length of the
graphics screen’s prompt line, which is typically no more than 80 characters.

Example

The following example demonstrates the differences between the four basic
output functions and how they handle the same string of text (the two octal
codes are DOS specific; see your operating system manual for octal codes that
apply to your system, however the basic concept is the same regardless of the
operating system):

(setqg str "The \"allowable\" tolerance is X361 \254\"")

(prompt str) prints The "allowable" tolerance is £+ 1/,"

and returns nil

(princ str) prints The "allowable" tolerance is + 1/,"

and returns "The "allowable" tolerance is \361 \254n""

(prinl str) prints "The "allowable" tolerance is \361 \254""

and returns "The "allowable" tolerance is \361 \254""

(print str) prints (newline)

"The "allowable" tolerance is \361 \254"" (space)
and returns "The "allowable" tolerance is \361 \254""

The menucmd function provides control of the display of the graphics screen
menus. This function activates one of the submenus of the current menu. It
takes a string argument that consists of two parts, separated by an equals sign,
in the following form:

"section=submenu"
where section specifies the menu section and submenu specifies which

submenu to activate within that section. The allowed values of section are
the same as in menu file submenu references.

38 Display Control

Chapter 2

The submenu argument can be a submenu label as defined in the current
menu file, or a main section label (such as SCREEN). If section specifies a
pull-down menu or the icon menu, submenu can be an asterisk (*): this causes
the menu to be displayed (pull-down menus and the icon menu are not auto-
matically displayed when they are activated). See chapter 6 of the AutoCAD
Customization Manual for further information about menu files.

Note: The stringargument should not include the dollar sign that introduces
the comparable instructions in a menu file, and the submenu portion of
stringdoesn’t include the asterisks that precede submenu labels in the menu
file.

Examples

The following menuemd function call causes the **0SNAPE submenu defined
in the current menu file to appear on screen:

(menucmd "S=0SNAPB")
In a similar way the following call assigns the submenu **MY-BUTTONS to the
***BUTTONSL menu and activates it.

(menucmd "Bl=MY-BUTTONS")
The following code forces the Cursor menu (defined as ***POP0) to appear on
screen:

(meriuemd "PO=POP0O") Initializes the ***POPO menu

(menucmd "PO=*") Displays it
The following call displays the pull-down menu currently initialized in the p1
(first pull-down menu) location:

(menucmd "Pl=%")
Using "pP1l="*" without previously initializing the desired menu usually works
fine but can result in unexpected behaviour. Although you can initialize virtu-
ally any menu at a pull-down or cursor menu location, it is best to use only
menus specifically designed for that menu area. If you have a submenu called

**MORESTUFF, you can display it at the P1 location by using the following
code: '

(menuemd "P1=MORESTUFF") Initializes the **MORESTUEF menu
(menucmd "Pl=%*") Displays it in the P1 location
This menu remains in this location until you replace it by initializing another
menu, as in the following:
(menucmd "P1=POP1")
If your menu makes use of the disabling (graying-out) and marking features
you can retrieve and change the state of a menu label with the menucmd func-

tion. The following call retrieves the current state of the fourth label in the
pull-down menu pP2:

(menucmd "P2.4=#?") if disabled returns "p . 4=~

These function calls enable and disable that same label:

(menucmd "P2.4=") Enables the label
(menucmd "P2.4=~") Disables the label

Display Control 39

General Utility Functions

You can also place and remove marks to the left of menu labels in a similar
manner. See chapter 6 in the AutoCAD Customization Manual for more infor-
mation on menus.

Not only can an AutoLISP function enable and disable menu labels, it can also
modify the text displayed in the label by placing a DIESEL string expression in
the label itself. Since DIESEL only accepts strings as input you can pass infor-
mation to the DIESEL expression through a USERS1-5 system variable that has
been set to a value returned by your function. See chapter 8 of the AutoCAD
Customization Manual for more information on the use of DIESEL expressions
in menus.

The menucmd function also lets you evaluate DIESEL string expressions within
an AutoLISP function. The following routine returns the current time:

(defun C:CTIME (¢/ ctim)

(setg etim (menucmd "M=$ (edtime, $ (getvar,date) ,H:MMam/pm) "))
(pripeg (streat "\nlhe corrent bimes ds " gkim))
(princ)

See chapter 8 of the AutoCAD Customization Manual for more information on
the use of DIESEL expressions with AutoLISP and a catalog of DIESEL func-
tions.

Control of Graphics and Text Screens

To switch between the text and graphics screens on single-screen AutoCAD
installations, an AutoLISP application can call graphscr to display the graph-
ics screen, or textscr to display the text screen. These functions are equiva-
lent to the AutoCAD commands GRAPHSCR and TEXTSCR, or to toggling the
Flip Screen function key. The function textpage is like textscxr, but clears
the text screen before displaying it (as the AutoCAD STATUS and HELP com-
mands do).

The redraw function is similar to the AutoCAD REDRAW command, but pro-
vides more control over what is displayed: it can not only redraw the entire
graphics screen, but also can specify a single entity to be either redrawn or
undrawn (i.e., blanked out). If the entity is a complex entity such as a Polyline
or Block, redraw can draw (or undraw) either the entire entity, or only its
header. The redraw function can also highlight and unhighlight specified
entities.

Control of Low-level Graphics and User Input

These functions provide direct access to the AutoCAD graphics screen and
input devices. They enable AutoLISP applications to use some of the display
and user interaction facilities built in to AutoCAD.

The function grelear clears the current viewport without affecting the
prompt, status, or menu areas of the graphics screen. The grtext function dis-
plays text directly in the status or menu areas, with or without highlighting.
The grdraw function draws a vector in the current viewport, with control over
colour and highlighting. The grvecs function draws multiple vectors. Finally,
grread returns “raw” user input, whether from the keyboard or the pointing

40

Display Control

s

Chapter 2

device (mouse or digitizer); if the call to grread enables tracking, the function
returns a digitized coordinate that can be used for such things as dragging.

Caution: Because these functions depend on code in AutoCAD, their opera-
tion can be expected to change from release to release: there is no guarantee
that applications calling these functions will be upward compatible. Also, they
depend on the current hardware configuration: in particular, applications that
call grtext and grread are not likely to work the same on all configurations
unless the developer is very careful to use them as described (see chapter 4,
page 124 through page 126) and avoid hardware-specific features. Finally,
because they are low-level functions, they do almost no error reporting and
can mess up the graphics screen display (see the example for a way to fix this).

Example

The following sequence reverses any damage to the graphics screen display
caused by incorrect calls to grelear, grtext, grdraw, or grvecs:

(grtext) Restores standard text
(redraw)

Tablet Calibration

AutoCAD users with a digitizing tablet can calibrate the tablet by using the
TABLET command, as described in chapter 4 of the AutoCAD Reference Manual.
The tablet function lets applications manage calibration by setting them
directly and by saving calibration settings for future use.

The first argument to the tablet function is an integer code. If code is equal
to 0, the function returns the current calibration. If code is equal to 1, the cal-
ibration is set according to the remaining arguments. Calibrations are
expressed as four three-dimensional points (in addition to the code). The first
three of these points—rowl, row2, and row3—are the three rows of the tab-
let’s transformation matrix. The fourth point, direction, is a vector that is
normal to the plane the tablet’s surface is assumed to lie in (expressed in WCS,
the World Coordinate System). When calibrating is done with the TABLET
command, the tablet’s surface is assumed to lie in the XY plane of the current
Ues:

Note: The system variable TABMODE controls whether Tablet mode is On (1)
or Off (0). You can control it by using the setvar function.

Examples

The following sample routine retrieves the current tablet calibration and stores
it in the symbol tcal.

(defun C:TABGET ()

)

(setg tcal

(tablet 0))

i o i -
(princ "\nCalibratien not cbtainable ")
(princ "\nConfiguration saved, use TABSET to retrieve calibration.")

)
(princ)

Tablet Calibration 41

General Utility Functions

If the above routine was successful, the symbol tcal now contains the list
returned by the tablet function. This list might appear as follows:

(1:(0-.00561717 -0.000978942 =i 3 IELY
(0.000978942 0.00561717 =9 AL7308)
(0.0, @ Br Il
(Ol el L..3)

)

To reset the calibration to the values retrieved by the previous routine, you can
use the C: TABSET routine:

(defun C:TARSET {)
(if (not (apply ‘tablet tecall))
(princ "\nUnable to reset calibration. ")

(progn

(prine "\nTablet calibration reset. i

(setvar "tabmode" 1) Sets tablet mode On
(1f (= (getwvar "tabmode") 0)

(princ "\nUnable to turn on tablet mode ")

)

The transformation matrix passed as rowl, row2, and row3 is a 3x3 transfor-
mation matrix meant to transform a two-dimensional point. The 2D point is
expressed as a column vector in homogeneous coordinates (by appending 1.0 as
the third element), so the transformation looks like this:

X Moo M01 Moz X
Y= MjoMy My, - v
DY M, M, 1.0| [1.0

The calculation of a point is similar to the 3D case. AutoCAD transforms the
point by using the following formulas:

X = MOOX+M01 Y+M02
Y = 1\4’10)(+M11Y+M12
D = M20X+M21Y+ 1.0

To turn the resulting vector back into a 2D point, the first two components are
divided by the third, the scale factor D, yielding the point (x'/D",y'/D").

For projective transformations, the most general case, tablet actually does
the full calculation. But for affine and orthogonal transformations, M,, and
M,, are both zero, so D’ would be 1.0. The calculation of D’ and the division
are omitted: the resulting 2D point is simply (X",¥’).

As the previous paragraph implies, an affine transformation is a special, uni-
form case of a projective transformation. An orthogonal transformation is a
special case of an affine transformation: not only are M,; and M,, zero, but

My, = M, and My, = -M,,.

42 Tablet Calibration

Chapter 2

Note: When you set a calibration, the list returned won’t equal the list pro-
vided if the directionwasn't normalized: AutoCAD normalizes the direction
vector before it returns it. Also, it ensures that the third element in the third
column (row3[z]) is equal to 1. This situation shouldn't arise if you set the
calibration using values retrieved from AutoCAD via tablet. However, it can
happen if your program calculates the transformation itself.

Nild Card Matching

(setqg

The wematch function enables applications to compare a string to a wild card
pattern. This facility can be used when building a selection set (in conjunction
with ssget as described in the section “Handling Selection Sets” on
page 45),and when retrieving extended entity data by application name (in
conjunction with entget as described in “Retrieving Extended Entity Data”
on page 66).

The wematch function compares a single string to a pattern; it returns T if the
string matches the pattern, and nil if it does not. The wild card patterns are
similar to the regular expressions used by many system and application pro-
grams. In the pattern, alphabetic characters and numerals are treated literally;
brackets can be used to specify optional characters or a range of letters or dig-
its; a question mark (?) matches a single character and an asterisk (*) matches
a sequence of characters; and certain other special characters have special
meanings within the pattern. See the description of wematch in chapter 4,
page 166, for more details.

Examples

These examples assume that a string variable called matchme has been
declared and initialized as follows:

matchme "this is a string - testl test2 test3 the end")

The following call checks whether matchme begins with the four characters
"thisg":

(wematch matchme "thig*") returns Y

The following call illustrates the use of brackets in the pattern. In this case,
wcmatch returns T if matchme contains "test4", "test5", "test6", Or
"test9" (note the use of the “*” character at the beginning and end of the
search pattern, allowing the desired portion to be located anywhere in the
string):

(wecmatch matchme "*test[4-69]1*") returns L
however
(wecmatch matchme "*test[4-61]*") returns i,

since the string contains "test1".

Wild Card Matching | 43

General Utility Functions

The pattern string can specify multiple patterns, separated by commas. The
following call returns T if matchme equals "ABC", if it begins with "xXyz", or if
it ends with "end".

(wcmatch matchme "ABC,XYZ*, *end") returns aK

44 i Wild Eard Matching

Chapter 3

Selection Set, Entity, and
Symbol Table Functions

Most AutoLISP functions that handle selection sets and entities identify a set
or entity by its name, an alphanumeric code assigned and maintained by
AutoCAD. Before it can manipulate a selection set or entity, an AutoLISP appli-
cation must first obtain the current name of the set or entity by calling one of
the functions that return a selection set or entity name. Examples of these
functions appear in the following sections.

Important: Selection-set and entity names are volatile; they apply only to the
current drawing session.

For selection sets, valid only in the current session, the volatility of names
poses no problem, but it does for entities, since they are saved in the drawing
database. An application that must refer to the same entities in the same draw-
ing (or drawings) at different times can use entity handles, described in the sec-
tion “Entity Handles and Their Use” on page 53.

Handling Selection Sets

The ssget function provides the most general means of creating a selection
set. It can create a selection set in one of the following ways:

» Explicitly specifying the entities to select by using the Last, Previous, Win-
dow, Implied, WPolygon, Crossing, CPolygon, or Fence options (as in
interactive AutoCAD use), or by specifying a single point. The entire data-
base can also be selected.

e Prompting the user to select objects.

You can use filtering with either of the previous groups of options. This lets you
specify a list of attributes and conditions that the selected entities must match.

The first argument to ssget is a string describing which selection option to
use. The next two arguments, pt1 and pt2, specify point values for the rele-
vant options (they should be left out if they don’t apply). A point list,
pt-1ist, must be provided as an argument to the selection methods that
allow selection by Polygons (i.e., Fence, Crossing Polygon, and Window Poly-
gon). The last argument, filter-1ist, is optional. If filter-Iist is sup-
plied, it specifies the list of entity field values that are used in filtering. Selec-
tion filters are described in more detail in “Selection Set Filter Lists” on
page 47. The following table summarizes the available mode values and the

Selection Set, Entity, and Symbol Table Furictions 45

Selection Set, Entity, and Symbol Table Functions

arguments used with each (a filter-1ist can be used as an additional argu-
ment to all of the selection methods listed):

Table 3—1. Selection options for ssget

Mode | Selectionmethod | Prototypes
none ”Usér selection or single-point (ssget) or
selection (if pc 1 is specified) (ssget ptl)

"Lt Last created entity visible on screen (ssget "L")
R Previous selection set (ssget "P")
we Implied selection set (previous set (ssget "I")

created with PICKFIRST mode On)

e Window selection (ssget "W" ptl pt2)
Highn Crossing selection (ssget "C" ptl pt2)
"R Fence (open polygon) selection (ssget "F" pt-list)
e Crossing Polygon selection (ssget "CP" pt-list)
"WE" Window Polygon selection (ssget "WP" pt-Ilist)
- Selects all entities in drawing (ssget "X")

Caution: If mode "X is specified and a filter-1ist is not provided, ssget
selects all entities in the database, including layers that are off, frozen, and out
of the visible screen.

Examples

The following code shows some representative calls to ssget:

(setg ptl (0.0 0.0 0.0) Sets ptl, pt2, pt3, and ptd fo point values
pEd *[5.0 5.0 0:0)
B Alde 9600 180
PEL * (2060 0L 0)
)
(setg ssl (ssget)) Asks the user for a general entity selection and
places those items in a selection set
(setqg ssl (ssget "P")) Creates a selection set of the most recently selected
objects
{(setyg ssl (ssget "L")) Creates a selection set of the last entity added to
the database that is visible on screen
(setqg ssl (ssget pt2)) Creates a selection set of an entity passing through
point (5,5)
(setg ssl (ssget "W" ptl pt2)) Creates a selection set of the entities inside the

window from (0,0) to (5,5)
(setg ssl (ssget "F" (list pt2 pt3 pt4d)))
Creates a selection set of the entities crossing the
fence defined by the points (5,5), (4,1), and (2,6)
(setg ssl (ssget "WB" (list ptl pt2 pt3)))
Creates a selection sel of the entities inside the
polygon defined by the points (0,0),(5,5), and(4,1)
(setqg ssl (ssget "X")) Creates a selection set of all entities in the database

46 Handling Selection Sets

Chapter 3

When an application has finished using a selection set, it is important to
release it from memory. This can be done by setting it tonil.

(setqg ssl nil)

Important: An AutoLISP application cannot have more than 128 selection sets
open at once. The limit is determined by many factors and might be slightly
lower on your system. When the limit is reached, AutoCAD refuses to create
more selection sets. Attempting to simultaneously manage a large number of
selection sets is not recommended. Instead, you should keep only a reasonable
minimum number of sets open at a time and set unneeded selection sets to
nil as soon as possible. If the maximum number of selection sets is reached,
you must call ge (see “Node Space” on page 177 for information on garbage
collection) before another ssget will work.

Selection Set Filter Lists

(setqg ssl

)

(setg ssl

)

(setg ssl

)

(setg sgl

)

e

r((o

e

g

An entity filter list is an association list that uses DXF group codes (see appen-
dix B for a list of group codes) in the same format as a list returned by entget
(described later in this chapter). The ssget function recognizes all group
codes except entity names (group -1), handles (group 5), and extended entity
data codes (=1000). If an invalid group code is used in a filter-list, itis
ignored by ssget. To search for entities with extended data, use the -3 code
as described in “Filtering for Extended Entity Data” on page 49.

When a filter-1istis provided as the last argument to ssget, the function
scans the selected entities and creates a selection set that contains the names
of all main entities matching the specified criteria. For example, using this
mechanism, you can obtain a selection set that includes all entities of a given
type, on a given layer, or of a given colour.

The filter-1ist specifies which property (or properties) of the entities are
to be checked, and what values constitute a match.

Examples

The four examples below demonstrate methods of using a filter-1ist with
different mode selection options.

(ssget Asks the user for general entity selection

"TEXT") }) but adds Text entities only to the selection set

(ssget "P" Creates a selection set of the most recently selected
“LINE"))) objects that are also Line entities

lEsget MW .bET D2 Creates a selection set of all entities inside the window
"EFLOOR9 "))) that are also on layer FLOOR9

(ssget "X" Creales a selection set of all entities in the database
"CIRCLE™))) that are Circle entities

Handling Selection Sets 47

Selection Set, Entity, and Symbol Table Functions

If both the code and the desired value are known, the list may be quoted as
shown previously. If either is specified by a variable, the list must be con-
structed (using the 1ist and cons functions).

(setg lay name "FLOOR3")

(setg ssl
(ssget "X" Creates a selection set of all entities in the database
(list (cons 8 lay name)) that are on layer FLOOR3

)

It the £filter—1ist specifies more than one property, an entity is included in
the selection set only if it matches all specified conditions. For instance (con-
tinuing the previous example):

(seget "X" (list (cons 0 "CIRCLE") (céns 8 lay name) (cons 62 1)))

This selects only Circle entities on layer FLOOR3 that are the colour red. This
type of test performs a Boolean AND operation. Additional tests for entity
properties are discussed in “Logical Grouping of Filter Tests” on page 49.

The ssget function filters a drawing by scanning the selected entities and
comparing the fields of each main entity against the specified filtering list. If
an entity’s properties match all specified fields in the filtering list, it is included
in the returned selection set. Otherwise, the entity is not included in the selec-
tion set. The ssget function returns nil if no entities from those selected
match the specified filtering criteria.

Caution: The meaning of certain group codes can differ from entity to entity,
and not all group codes are present in all entities. If a particular group code is
specified in a filter, entities not containing that group code will be excluded
from the selection set that ssget returns.

Note: When ssget filters a drawing, the selection set it retrieves might
include entities from both paper space and model space. However, when the
selection set is passed to an AutoCAD command, only entities from the space
that's currently in effect are used (the space to which an entity belongs is spec-
ified by the value of its 67 group, as described in appendix B of this manual
and chapter 11 of the AutoCAD Customization Manual).

Wild Card Patterns in Filter Lists

Symbol names specified in filtering lists—the entity type (0), Block name (2),
DIMSTYLE name (3), Linetype (6), Text style (7) and Layer name (8)—can
include wild card patterns. The wild card patterns recognized by ssget are the
same as those recognized by the function wematch, and are described in the
section “Wild Card Matching” on page 43, and in the description of wematch
in chapter 4, page 166.

Caution: When filtering for anonymous Blocks, you must escape the * charac-
ter with a reverse quote (*) because the = is read by ssget as a wild card char-
acter. For example, you can retrieve an anonymous Block named *U2, with:

(Ssget e 1((2 y u*Uzn)))

48

Handling Selection Sets

Chapter 3

Filtering for Extended Entity Data

Using the ssget filter-list, you can select all entities containing
extended entity data for a particular application (see “Notes on Extended
Entity Data” on page 63). This is done using the -3 group code, as in:

(ssget "X" f((0 . "CIRCLE")} (-3 ("APPNAME"))))

This would select all circles that include extended data for the "APPNAME"
application. If more than one application name is included in the -3 group’s
list, an AND operation is implied and the entity must contain extended data
for all of the specified applications. Thus

(mseget XY ¢ ({0.. YCIRELE") . (=3 ("APPL"} ("APPZ™))))

would select all circles with extended data for both the "App1" and "App2"
applications. Wild card matching is permitted, so either:

lesget PV CIUTE . HETREEEYY | (=8 (TABBIEE] ™)))

or

(Bsget MIEY HED v VEIREIEY) 1 (=8 A EEBLARPR))))

would select all circles with extended data for either or both of these applica-
tions.

Relational Tests

Unless otherwise specified, an “equals” test is implied for each item in the
filter—1ist. For numeric groups (integers, reals, points, and vectors) you
can specify other relations by including a special -4 group code that specifies
a relational operator. The value of a -4 group is a string indicating the test
operator to be applied to the next group in the filter-1ist. See “Relational
Tests” on page 155 for further information.

Example
The following selects all circles with radius (group code 40) greater than or
equal to 2.0:

lesgst "E" "I(40 . MEIRELE™) (=4 . V=) (&0 . 2.0)))

Logical Grouping of Filter Tests

In addition to the relational operators described previously you can also test
groups by creating nested Boolean expressions that use logical grouping oper-
ators (shown on page 156).

The grouping operators are specified by -4 groups, like the relational opera-
tors. They are paired and must be balanced correctly in the filter list or the
ssget call will fail.

Hana’ﬁr;g Selection Sets 49

Selection Set, Entity, and Symbol Table Functions

An example of grouping operators in a filter list follows:

(gaget "XV ((-4 ..,"<ORY)
(=4, . .. "“"ZBHD")
(@« , "CIRCLE")
(40 = 1.0)
(-4 . "AND>")
(=4 . FcHND™)
(0. “LINE")
(8 . "ABC")
(-4 . "AND>")
(= IR

)

This selects all circles with radius 1.0 plus all lines on layer "ABC".

Note: The grouping operators aren’t case-sensitive; you can also use their low-
ercase equivalents.

Grouping operators are not allowed within the -3 group itself. As discussed
previously in “Filtering for Extended Entity Data,” multiple application names
specified in a -3 group use an implied AND operator. If you want to test for
extended entity data using other grouping operators, you can do so by speci-
fying separate -3 groups and grouping them as desired. To select all circles hav-
ing extended data for either application "APP1" or "APP2" but not both, you

would use:
(ssgebs "R (60 . "GIRELE")
(i "<XOR")
(=31 (MARPPT"))
(=3 ("APP2"))
(=2 "XOR>")

)
)

You can simplify the coding of frequently used grouping operators by setting
them equal to a symbol. The previous example could be rewritten as follows
(notice that in this example you must explicitly quote each list):

(setg <xor ‘(-4 . "<XOR™)
ROT> (-4 . "XOR>")
)
(sgget "X (list (0. "CTRGLE")
<Xor
=3RRI)
"W ATERP2N)
XOT >

)

As you can see, this method might not be sensible for short pieces of code, but
can be beneficial in larger applications.

50 Handling Selection Sets

T 1

Chapter 3

Selection Set Manipulation

(setg fname
(setg lname

Once a selection set has been created, entities can be added to it or removed
from it with the functions ssadd and ssdel, which are similar to the Add and
Remove options when AutoCAD has interactively prompted the user to Select
objects: or Remove objects:.

The ssadd function can also be used to create a new selection set, as shown in
the following example.
Example

The following code fragment creates a selection set that includes the first and
last entities in the current drawing (entnext and entlast are described later
in this chapter).

(entnext)) Gets first entity in the drawing
(entlast)) Gets last entity in the drawing

(if (not fname)
{princ "\nNo entities in drawing. ")

(progn
(setg ourset (ssadd fname)) Creates a sel. set of the first entity
(ssadd lname ourset) Adds the last entity to the same sel. set

(setg sset

(setg entl
(setg ent4d

The example will run correctly even if there is only one entity in the database
(in which case, both entnext and entlast set their arguments to the same
entity name). If ssadd is passed the name of an entity already in the selection
set, it simply ignores the request and does rot report an error.

The following function removes the first entity from the selection set created
in the previous example:

(ssdel fname ourset)

If there is more than one entity in the drawing (that is, if fname and Iname
are not equal), the selection set ourset now contains only 1name, the last
entity in the drawing.

The function sslength returns the number of entities in a selection set, and
ssmemb tests whether a particular entity is a member of a selection set. Finally,
the function ssname returns the name of a particular entity in a selection set,
using an index into the set (entities in a selection set are numbered from 0).

Example

The following code shows a few calls to ssname:

(ssget)) Creates the selection set (by prompting

the user)
(ssname sset 0)) Gets the nare of first entity in sset
(ssname sset 3)) Gets the name of the fourth entity in sset

(if (not entd)
(princ "\nNeed to select at least four entities. ")

)
(setqg ilast

(sslength sset)) Finds index of the last entity in sset
Gets the name of the last entity in sset

(setg lastent (ssname sset (1- ilast)))

Handling Selection Sets 51

Selection Set, Entity, and Symbol Table Functions

Note: Regardless of how entities have been added to a selection set, the set
never contains duplicate entities. If the same entity is added more than once,
the later additions are simply ignored. Because of this, sslength accurately
returns the number of distinct entities in the specified selection set.

Entity Name and Data Functions

Entity-handling functions are organized into two categories: functions that
retrieve the name of a particular entity, either by searching the database or
prompting the AutoCAD user, and functions that retrieve or modify entity
data.

Entity Name Functions

To operate on an entity, an AutoLISP application must obtain its name for use
in subsequent calls to the entity data or selection set functions. Two of the
functions described in this section, entsel and nentsel, return not only the
entity’s name, but also additional information for the application’s use.

Both functions require the AutoCAD user to select an entity interactively by
picking a point on the graphics screen: all of the other entity name functions
can retrieve an entity even if it is not visible on screen or is on a frozen layer.
The entsel function prompts the AutoCAD user to select an entity by picking
a point on the graphics screen; entsel returns both the entity name and the
value of the point that was selected. Some entity operations require knowledge
of the point by which the entity was selected; examples from the set of existing
AutoCAD commands include BREAK, TRIM, and EXTEND. The nentsel
function is discussed in detail in the section, “Entity Context and Coordinate
Transform Data” on page 54. These functions honour keywords if they are pre-
ceded by a call to initget; see page 128 for more information on initget.

The entnext function retrieves entity names sequentially. If entnext is called
with no arguments, it returns the name of the first entity in the drawing data-
base; if its argument is the name of an entity in the current drawing, it returns
the name of the succeeding entity.

Example

This code fragment illustrates how ssadd can be used in conjunction with
entnext to create selection sets and add members to an existing set.

(setg el (entnext))
(Lf (not el) Sets el to name of first entity
(princ "\nNo entities in drawing. ")
(progn
(setg ss (ssadd)) Sets s to a null selection set
(ssadd el ss) Returns selection set ss with el added
(setg e2 (entnext el)) Gets entity following e1
(ssadd e2 ss) Adds e2 to selection set ss

52 Entity Name and Data Functions

3

Chapter 3

The entlast function retrieves the name of the last entity in the database.
The last entity is the most recently created main entity, so entlast can be
called to obtain the name of an entity that has just been created via a call to
command.

You can set the entity name returned by entnext to the same variable name
passed to this function. This will essentially “bump” or “walk” a single entity
name variable through the database. For example:

(setqg one_ent (entnext)) Gets name of first entity
(while one ent

Processes new entity

(setqg one ent (entnext one ent))
) Value of one_ent is now nil

Entity Handles and Their Use

The handent function retrieves the name of an entity with a specific handle.
Entity handles must be enabled in the current drawing: handles are controlled
by the AutoCAD HANDLES command, and the system variable HANDLES,
which equals 1 if they're enabled, 0 if disabled. Like entity names, handles are
unique within a drawing. Unlike entity names, an entity’s handle is constant
throughout its life (provided the HANDLES command is not used to Destroy all
handles in a database). AutoLISP applications that manipulate a specific data-
base can use handent to obtain the current name of an entity they must use.

Example

The following code fragment uses handent to obtain an entity name and print
it out:

(if (not (setqg el' {handent "5a2")))
(princ "\nNo entity with that handle exists. ")
(prine el)

)

In one particular editing session, this code might print out:
<Entity name: 60004722>

In another editing session with the same drawing, the example might print an
entirely different number. But in both cases, the code would be accessing the
same entity.

The handent function has an additional use: entities that have been deleted
from the database (via entdel, described in the following section) aren’t
purged until the current drawing ends. This means that handent can recover
the names of deleted entities, which can then be restored to the drawing by a
second call to entdel.

Note: When handles are On in a drawing, they are provided for Block defini-
tions, including Block subentities, as well as for extended entity data. See the
AutoCAD Reference Manual for more information.

Entities in drawings that are cross-referenced via XREF Attach are not actually
part of the current drawing: their handles are unchanged, but cannot be
accessed by handent. However, when drawings are combined via INSERT,

Entity Name and Data Functions 53

Selection Set, Entity, and Symbol Table Functions

INSERT *, XREF Bind (XBIND), or partial DXFIN, the handles of entities in the
incoming drawing are lost (provided they were present in the first place), and
incoming entities are assigned new handle values to ensure that each handle
in the current drawing remains unique.

Note: Extended entity data, described later in this chapter, can include entity
handles for saving relational structures in a drawing. Sometimes, these han-
dles also require translation or maintenance. See the section “Handles in
Extended Entity Data” on page 68.

Entity Context and Coordinate Transform Data

The nentsel and nentselp functions are similar to ent se 1, except that they
return two additional values which are meant to facilitate handling of entities
that are nested within block references.

Important: Another difference between these functions is that when the user
responds to a nentsel call by picking a complex entity or a complex entity is
selected by nentselp, these functions return the entity name of the selected
subentity and not the complex entity’s header, as entsel does. For example,
when the user picks a Polyline, nentsel returns a Vertex subentity instead of
the Polyline header. To retrieve the Polyline header, the application must use
entnext to walk forward to the Seqend subentity, then obtain the name of the
header from the Seqend subentity’s -2 group. The same applies when the user
selects Attributes in a nested block reference. The nentselp function is gen-
erally preferred to nentsel since it returns a transformation matrix of the
same format as that returned by grvecs.

The first of the additional elements returned by nentsel is the Model to
World Transformation Matrix. It is a list consisting of four sublists, each of
which contains a set of coordinates. This matrix can be used to transform the
entity definition data points from an internal coordinate system called the
Model Coordinate System (MCS) to the World Coordinate System (WCS). The
insertion point of the Block (this refers to Xrefs also) containing the selected
entity defines the origin of the MCS. The orientation of the UCS when the
Block is created determines the direction of the MCS axes.

The second additional element is a list containing the entity name of the Block
that contains the selected entity. If the selected entity is contained in a nested
Block (a Block within a Block), the list additionally contains the entity names
of all Blocks in which the selected entity is nested, starting with the innermost
Block and continuing outward until the name of the outermost Block that was
inserted in the drawing is reported.

(<Entity Name: enamels Name of entity
(Px Py Pz) Pick point
((X0 Y0 Z0) Model to World
(%1 ¥1 21} Transformation Matrix
(X2 Y2 Z2)
(X3 ¥3 Z3)
)
(<Entity name: enameZs Name of most deeply nested Block

containing selected entity

<Entity name: enamens) Nawme of outermost Block
) containing selected entity

54 Entity Name and Data Functions

Chapter 3

For the following example, assume that the current coordinate system is the
WCS. Create a Block named SQUARE consisting of four lines:

Command: line

From point: 1,1

to point: 3,1

to point: 3,3

to point: 1,3

to point: ¢

Command: block

Block name (or ?): square
Insertion base point: 2,2
Select objects: Select the four lines you just drew.
Select objects:

Then insert the Block in a UCS rotated 45 degrees about the Z axis:

Command: ucs
Origin/ZAxis/3point/Entity/View/X/Y/Z/Prev/Restore/Save/Del/?/<World>: z
Rotation angle about Z axis <0>: 45

Command: insert

Block name (or 7): square

Insertion point: 7,0

X scale factor <1> / Corner / XYZ:
Y scale factor (default=X):
Rotation angle:

Use nentsel to select the lower-left side of the square.

(setg ndata (nentsel))

This sets the symbol ndata equal to a list similar to:

(<Entity Name: 400000a0> Entity name
(6.46616 -1.0606 0.0) Pick point
(7 0TTeTLOT! Q.TOTLOT 0L Model to World
-0, 707107 ©0.7071070%0) transformation matrix

(
(0.0 -0.0 1.0)
(4.94975 4.94975 0.0)
)
(«Entity name: 6000001c>) Name of Block
) containing selected entity

Once you've obtained the entity name and the Model to World Transforma-
tion Matrix is obtained, you can transform the entity definition data points
from the MCS to the WCS. Use entget and assoc on the entity name to
obtain the desired definition points expressed in MCS coordinates. Then pass
the points and the Model to World Transformation Matrix data (obtained in
the first nentsel call) to the formulas below.

Entity Name and Data Functions 55

Selection Set, Entity, and Symbol Table Functions

(setqg

If the selected entity is not a nested entity, the transformation matrix is simply
set to the identity matrix:

LUieE g
(0 L 10
0 0 1
[0 0

The following equations show how to transform a point or vector:
X'=XMyy+YM o+ ZM,,+ M,
Y'=XMy, +YM,; +ZM,, + M,
Z'=XMy,+YM,, +ZM,, + M,,
The Mj;, where 0 <, j < 2, are the Model to World Transformation Matrix coor-
dinates, X, ¥, and Z is the entity definition data point expressed in MCS coor-

dinates, and X', ¥’, and Z’ is the resulting entity definition data point
expressed in WCS coordinates.

Note: To transform a vector rather than a point, don’t add in the translation
vector [Méa M, M32] (from the fourth column of the transformation matrix).

This example illustrates how to obtain the MCS start point of a line (group
code 10) contained in a Block definition. The statement

(setqg edata (assoc 10 (entget: (car ndata))))

stores the entity data (using the entity name obtained with nentsel earlier)
in the symbol edzata and returns:

(L@ @ 00

The statement

(setg matrix (caddr ndata))

stores the Model to World Transformation Matrix sublist in the symbol
matrix and returns:

¢ 00YT6TLeT 0 TeTeT 0.0] X transformation
(=0 STOPLET @70y U Y transformation
(S S0 =TT S Z transformation
(4.94975 4.94975 0.0) Displacement from WCS origin

)

Apply the transformation formula for X’ to change the X coordinate of the

start point of the line from an MCS coordinate to a WCS coordinate. Store the
results in the symbol answer

answer
add:

(* (car (nth 0 matrix)) (cadr edata)) Myg * X

(* (car (nth 1 matrix)) (caddr edata)) Mpp*Y

(* (car (nth 2 matrix)) (cadddr edata)) Moy * Z

{(car (nth 3 matrix)) M3

56

Entity Name and Data Functions

Chapter 3

which returns 3.53553, the WCS X coordinate of the start point of the selected
line.

Entity Data Functions

(defun C:PRT

The functions described in this section operate on entity data and can be used
to modify the current drawing database.

The entdel function deletes a specified entity. The entity is not actually
purged from the database until the end of the current drawing session, so if
the application calls entdel asecond time during that session and specifies
the same entity, the entity is undeleted (handent can be used to retrieve the
names of deleted entities, as previously described).

Note: Attributes and Polyline vertices cannot be deleted independently of
their parent entities; entdel operates only on main entities. If you need to
delete an attribute or vertex, you can use command to invoke the AutoCAD
ATTEDIT or PEDIT commands.

The entget function returns the definition data of a specified entity. The data
are returned as a list. Each item in the list is specified by a DXF group code. The
first item in the list contains the entity’s current name.

Example

For the following example, assume that the following (default) conditions
apply to the current drawing:

e The current layer is 0.
e The current linetype is CONTINUOUS.
e The current elevation is zero.

e Entity handles are disabled.

Suppose the user has drawn a line with the following sequence of commands.
Command: Line
From point: 1,2
To point: 6,6
To point:

Then an AutoLISP application could retrieve and print the definition data for
the line by using the following AutoLISP function:

NTDXF (/ ent entl ct)

(setg ent (entlast)) Sets ent to the last entity

(setg entl (entget ent)) Sets ent1 to the association list of the last entity

(setg ct 0) Sets ct (a counter) to 0

(textpage) Switches to the text screen

(princ "\nResults from entget of last entity: ")

(repeat (length entl) Repeats for the number of members in the list
(print (nth ct entl)) Prints a newline then each list member
(setg ct (1+ ct)) Increments the counter by one

)

(princ) Exits quietly

Entity Name and Data Functions 57

Selection Set, Entity, and Symbol Table Functions

(setg en (entnext))

)

This would print the following (the entity name value will vary):

Results from entget of last entity:
(-1 . <Entity name: 60000014>)
(0. "LINE")

(8."0")

(101.02.0 0.0)

(11 6.0 6.0 0.0)

(2100.0 0.0 1.0)

The first member of the list (with a -1 group code) contains the name of the
entity this list represents. The entmod function described below uses it to iden-
tify the entity to be modified.

The codes for the components of the entity are those used by DXF and docu-
mented in appendix B of this manual and chapter 11 of the AutoCAD
Customization Manual. As with DXF, the entity header items (color, linetype,
thickness, the attributes-follow flag, and the entity handle) are returned only
if they have values other than the default. Unlike DXF, optional entity defini-
tion fields are returned whether they equal their defaults, or not. This is
intended to simplify processing: an application can always assume that these
fields are present. Also unlike DXF, associated X, ¥, and Z coordinates are
returned as a single point variable rather than as separate X (10), ¥ (20), and Z
(30) groups.

The assoc function searches a list for a group of a specified type:

(cdr (assoc 0 entl))

This would return the entity type "LINE" (group code 0) in the list ent 1. If the
DXF group code specified is not present in the list (or if it is not a valid DXF
group), assoc returns nil.

The entmod function modifies an entity. It passes a list that has the same for-
mat as a list returned by entget, but with some of the entity group values
(presumably) modified by the application. This function complements
entget: the primary mechanism by which an AutoLISP application updates
the database is by retrieving an entity with entget, modifying its entity list,
then passing the list back to the database via entmod.

Example

This code fragment retrieves the definition data of the first entity in the draw-
ing and changes its layer property to MYLAYER:

Sets en to the name of the first entity in the drawing

(setqg ed (entget en)) Sets ed to the entity data for entity name en
(setg ed
(subst (cons 8 "MYLAYER")
(assoc B ed) Changes the layer group in ed
ed to layer MYLAYER
)
(entmod ed) Modifies entity en’s layer in drawing

58

Entity Name and Data Functions

Chapter 3

The following are the restrictions on the database changes that entmod is
allowed to make:

* entmod cannot change the entity’s type or handle.

* AutoCAD must recognize all objects (except layers) that the entity list
refers to.

The name of any Text style, Linetype, Shape, or Block that appears in an
entity list must be defined in the current drawing before the entity list is
passed to entmod.

Exception: entmod accepts new layer names.

If the entity list refers to a layer name that has not been defined in the cur-
rent drawing, entmod creates a new layer. The attributes of the new layer
are the standard default values used by the New option of the AutoCAD
LAYER command.

* entmod cannot change internal fields (internal fields are the values that
AutoCAD assigns to certain group codes: -2, entity name reference; -1,
entity name; 5, entity handle).

Any attempt to change an internal field—for example, the main entity
name in a Seqend subentity (group -2)—is simply ignored.

e entmod cannot change Viewport entities.
An attempt to change a Viewport entity causes an error.

The entmod function can modify subentities such as Polyline Vertices and
Block Attributes.

Caution: If you use entmod to modify an entity in a Block definition, this
affects all INSERT or XREF references to that Block; also, entities in Block defi-
nitions cannot be deleted by entdel.

An application can also add an entity to the drawing database by calling the
entmake function. Like entmod, the argument to entmake is a list whose for-
mat is similar to that returned by entget. The new entity that the list
describes is appended to the drawing database (it becomes the Last entity in
the drawing). If the entity is a complex entity (a Polyline or Block), it is not
appended to the database until it is complete, as described later in this section.

Example

The following code fragment creates a circle on the layer MYLAYER:

(entmake ‘((0 . "CIRCLE") Entity type
(8 . "MYLAYER") Layer
(10 550 Ha 0 201 Center point
i AP O Radius

)
The restrictions on entmake are similar to those for entmod:

e The first or second member in the list must specify the entity type.
The type must be a valid DXF group code.

Entity Name and Data Functions 59

Selection Set, Entity, and Symbol Table Functions

If the first member does not specify the type, it can only specify the name
of the entity: group -1 (the name is not saved in the database).

* AutoCAD must recognize all objects (except layers) that the entity list
refers to.

Exception: entmake accepts new layer names.
* Any internal fields passed to entmake are ignored.
® entmake cannot create Viewport entities.
Both entmod and entmake perform the same consistency checks on the entity

data passed to them as the AutoCAD DXFIN command performs when reading
DXF files. They will fail if they cannot create valid drawing entities.

Anonymous Blocks

The Block Definitions (BLOCK) table in a drawing can contain anonymous
blocks, which AutoCAD creates to support hatch patterns and associative
dimensioning. They can also be created by entmake, usually to contain enti-
ties that the user cannot access directly. Unreferenced anonymous blocks are
purged from the BLOCK table at the beginning of each drawing session. Refer-
enced (INSERTed) anonymous blocks are not purged. You can use entmake to
create a block reference (INSERT) to an anonymous block (you cannot pass an
anonymous block to the INSERT command). You can also use entmake to rede-
fine the block. The entities in a block (but not the Block entity itself) can be
modified with entmod.

The name (group 2) of an anonymous block created by AutoLISP or ADS has
the form *Unnn, where nnnis a number generated by AutoCAD. Also, the low-
order bit of an anonymous block’s Block type flag (group 70) is set to one. When
entmake creates a block whose name begins with * and whose anonymous bit
is set, AutoCAD treats this as an anonymous block and assigns it a name. Any
characters following the * in the name string passed to entmake are ignored.

Caution: Although a referenced anonymous block becomes permanent, the
numeric portion of its name can change between drawing sessions. Applica-
tions cannot rely on anonymous block names remaining constant.

Creating Complex Entities

A complex entity (a Polyline or Block) is created by multiple calls to entmake,
by using a separate call for each subentity. When entmake first receives an ini-
tial component for a complex entity, it creates a temporary file in which to
gather the definition data (and extended data, if that is present; see the section
“Notes on Extended Entity Data” on page 63). For each subsequent entmake
call, the function checks to see if the temporary file exists. If it does, the new

-subentity is appended to the file. When the definition of the complex entity

is complete (i.e., when entmake receives an appropriate Segend or Endblk sub-
entity), the entity is checked for consistency, and if it is valid it is added to the
drawing. The file is deleted when the complex entity is complete or when its
creation has been cancelled.

Caution: The entity does not appear in the drawing database until the final
Seqend or Endblk subentity has been passed to entmake. In particular,
entlast cannot be used to retrieve the most recently created subentity for a
complex entity that has not been completed.

60

Entity Name and Data Functions

it

i
i
Al

i

Chapter 3

As the previous paragraphs imply, entmake can construct only one complex
entity at a time. If a complex entity is being created and entmake receives
invalid data or an entity that is not an appropriate subentity, both the invalid
entity and the entire complex entity are rejected. You can explicitly cancel the
creation of a complex entity by calling entmake with no arguments.

The following example contains five entmake functions that create a single
complex entity, a Polyline. The Polyline has a linetype of DASHED and a colour
of BLUE. It has three vertices located at coordinates (1,1,0), (4,6,0), and (3,2,0).
All other optional definition data assume default values (for this example to
work properly, the linetype DASHED must be loaded).

(entmake LT L POLYLINE") Entity type
(62 . 5) Color
(6 . "dashed") Linetype
(66 . 1) Vertices follow
)

)

(entmake *({0 . "VERTEX") Entity type
(I 1. 0 2.0 -0, 0 Start point
)

)

(entmake w0 “VEREER") Entity type
(T 4.0 6008 5) Second point
)

)

(entmake *((0 . "VERTEX") Entity type
(Lo 2.8 2.0 8.0) Third point
)

)

(entmake *{(0 . "SEQEND"))) Sequence end

Block definitions begin with a Block entity and end with an Endblk subentity.
Block definitions cannot be nested, nor can they reference themselves. A block
definition can contain references to other block definitions.

Caution: The entmake function does not check for name conflicts in the Block
Definitions table, so it can redefine existing blocks. Before you use it to create
a block, you should use tblsearch (described in the section “Symbol Table
Access” on page 69) to ensure that the name of the new block is unique.

Block Insert references can include an attributes follow flag (group 66). If
present and equal to one, a series of Attribute (Attrib) entities is expected to
follow the Insert entity. The attribute sequence is terminated by a Seqend sub-
entity.

Polyline entities always include a vertices follow flag (also group 66); the value
of this flag must be one, and the flag must be followed by a sequence of Vertex
entities, terminated by a Seqend subentity.

Complex entities can exist in either model space or in paper space, but not
both. If the current space is changed by invoking either MSPACE or PSPACE (via
command) while a complex entity is under construction, a subsequent call to
entmake will cancel the complex entity. This can also occur if the subentity
has a 67 group whose value does not match the 67 group of the entity header.

Entity Name and Data Functions &

Selection Set, Entity, and Symbol Table Functions

Entity Data Functions and the Graphics Screen

Changes to the drawing made by the entity data functions are reflected on the
graphics screen, provided the entity being deleted, undeleted, modified, or
made is in an area and on a layer that is currently visible. There is one excep-
tion to this: when entmod modifies a subentity, it does not update the image
of the entire (complex) entity. The reason for this should be clear: if, for exam-
ple, an application were to modify 100 vertices of a complex Polyline with 100
calls to entmod, the time required to recalculate and redisplay the entire
Polyline as each vertex was changed would be unacceptably slow. Instead, an
application can perform a series of subentity modifications, then redisplay the
entire entity at once with a single call to the entupd function.

Example

Suppose the first entity in the current drawing is a Polyline with several Verti-
ces. The following code modifies the second Vertex of the Polyline, and then
regenerates its screen image:

(setg el (entnext)) Sets el to the Polyline’s entity name
(setg vl (entnext el)) Sets w1 to its first vertex
(setq v2 (entnext wvl1)) Sets w2 to its second vertex
(setg v2d (entget v2)) Sets v2d to the vertex data
(setg v2d
(subst " (10 1.0 2.0 0.0)
(assoc 10 v2d) Changes the vertex’s location in v2d
v2d to point (1,2,0)
)
)
(entmod v2d) Moves the vertex in the drawing
(entupd el) Regenerates the Polyline entity el

The argument to entupd can specify either a main entity or a subentity: in
either case, entupd regenerates the entire entity. Although its primary use is for
complex entities, as shown in the example, entupd can regenerate any entity
in the current drawing.

Caution: If the modified entity is in a block definition, then entupd is not suf-
ficient: you must regenerate the drawing by invoking the AutoCAD REGEN
command (via command) to ensure that all instances of the block references are
updated.

Notes on Processing Curve-Fit and Spline-Fit Polylines

When an AutoLISP application uses entnext to step through the vertices of a
Polyline, it might encounter vertices that were not created explicitly; auxiliary
vertices are inserted automatically by the AutoCAD PEDIT command’s Fit and
Spline options. You can safely ignore them, since changes to these vertices will
be discarded the next time the user uses PEDIT to Fit or Spline the Polyline.

The Polyline entity’s group 70 flags indicate whether the Polyline has been
curve-fit (bit value 2) or spline-fit (bit value 4). If neither of these bits is set, all
of the Polyline’s vertices are regular user defined vertices. However, if the
curve-fit bit (2) is set, alternating vertices of the Polyline will have bit value 1

Entity Name and Data Functions

Chapter 3

set in their 70 group to indicate that they were inserted by the curve-fitting
process. If you are using entmod to move the vertices of such a Polyline with
the intent of refitting the curve using PEDIT, you should ignore these vertices.

Likewise, if the Polyline entity’s spline-fit flag bit (bit 4) is set, an assortment
of vertices will be found, some with flag bit 1 (inserted by curve-fitting if sys-
tem variable SPLINESEGS was negative), some with bit value 8 (inserted by
spline fitting), and all others with bit value 16 (spline frame control point).
Here again, if you are using entmod to move the vertices and intend to refit
the spline afterward, you should move only the control point vertices.

Notes on Extended Entity Data

Several AutoLISP functions are provided to handle extended entity data, which
is created by applications written with ADS or AutoLISP. Extended entity data
was introduced in AutoCAD Release 11 for the use of both user applications
and products such as the Application Programming Interface (API) of the
Advanced Modelling Extension (AME). If an entity contains extended data, it
follows the entity’s regular, definition data. This is illustrated by figure 3-1.

An entity’s extended data can be retrieved by calling entget. The entget
function retrieves an entity’s regular definition data and the extended data for
those applications specified in the entget call.

Note: When extended entity data is retrieved via entget, the beginning of
extended data is indicated by a -3 code; the -3 code is in a list that precedes
the first 1001 group. The 1001 group contains the application name of the first
application retrieved, as shown in the figure and described in the following
sections.

Group Code Field

(-1,-2 Entity name)
(0-239 Regular definition data fields)
¢ Normal entity definition
| data.

) J
(-3 Extended data sentinel

(1001 Registered application name 1)

1000,

1002-1071 XDATA fields)
(1001 i%egistered application name 2)

(1000,

1002-1071 XDATA fields) Extended entity data.
(1001 Registered application name 3)
) |

Figure 3—1. Extended entity data

Entity Name and Data Functions 63

Selection Set, Entity, and Symbol Table Functions

64

Organization of Extended Entity Data

As you can observe in the figure, extended data consists of one or more 1001
groups, each of which begins with a unique application name. Application
names are string values.

The extended data groups returned by entget follow the definition data in
the order they're saved in the database. This is also illustrated schematically in

the figure.

Within each application’s group, the contents, meaning, and organization of
the data are defined by the application itself; AutoCAD maintains the informa-
tion, but doesn’t use it. As the figure also shows, the group codes for extended
entity data are in the range 1000-1071. Many of these group codes are for
familiar data types, as follows:

String

Application
name

Layer name

Database
handle

3D point
Real
Integer

Long

1000. Strings in extended entity data can be up to 255 bytes
long (with the 256th byte reserved for the null character).

1001 (also a string value). Application names can be up to 31
bytes long (the 32d byte is reserved for the null character) and
must adhere to the rules for symbol table names (such as layer
names). An application name can contain letters, digits, and
the special characters s (dollar sign), - (hyphen), and _ (under-
score). It cannot contain spaces. Letters in the name are con-
verted to uppercase. The use of application names is described
in more detail later in this section.

Note: A group of extended data cannot consist of an applica-
tion name with no other data. If you attempt to add a 1001
group but no other extended data to an existing entity, the
attempt is ignored. If you attempt to make an entity whose
only extended data group is a single 1001 group, the attempt
fails.

1003. Name of a layer associated with the extended entity
data.

1005. Handle of an entity in the drawing database. Under cer-
tain conditions, AutoCAD translates these, as described in the
section “Handles in Extended Entity Data” on page 68.

1010. Three real values, contained in a point.
1040. A real value.
1070. A 16-bit integer (signed or unsigned).

1071. A 32-bit signed (1ong) integer. If the value that appears
in a 1071 group is a short integer or real value, it is converted
to a long integer; if it is invalid (for example, a string), it is
converted to a long zero (0L).

Note: AutoLISP manages 1071 groups as real values. If you
entget an entity that contains a 1071 group, the value is
returned as real. For example:

(1071 . 12.0)

Entity Name and Data Functions

Chapter 3

If you want to create a 1071 group in an entity via entmake or
entmod, you can use either a real or an integer value. For
example:

(entmake ‘((..... (1071 . 12))))
(entmake " ((... Gl b T e U s 303
(entmake " {{«swwe (1T s ERERT Y e wnd = DI
(entmake * ((..... (1071 . 65537))))

but AutoLISP still returns the group value as a real:
(EriEmales 20 (e shaaw (LT L 2 BEB3ITY caws 1)

returns
(1071 . 65537.0)

ADS always manages 1071 groups as long integers.

Several other extended entity data groups have special meaning in this context
(if the application chooses to use them):

Control string

Binary data

World space
position

World space
displacement

World
direction

Distance

Scale factor

1002. An extended data control string can be either "{" or
"} »; these braces enable the application to organize its data by
subdividing it into lists. The left-brace begins a list, and a right-
brace terminates the most recent list; lists can be nested.

When it reads the extended entity data for a particular appli-
cation, AutoCAD checks to ensure that braces are balanced
correctly.

Caution: If a 1001 group appears within a list, it is simply
treated as a string and does not begin a new application group.

1004. Binary data is organized into variable-length chunks,
which can be handled in ADS with the ads_binary structure.
The maximum length of each chunk is 127 bytes.

Caution: AutoLISP cannot directly handle binary chunks, so
the same precautions that apply to long (1071) groups apply
to binary groups as well.

1011. Unlike a simple 3D point, the World space coordinates
are moved, scaled, rotated, and mirrored along with the parent
entity to which the extended data belongs. The world space
position is also stretched when the STRETCH command is
applied to the parent entity and this point lies within the
select window.

1012. A 3D point that is scaled, rotated, or mirrored along with
the parent, but not STRETCHed or MOVE.

1013. Also a 3D point that is rotated, or mirrored along with
the parent, but not scaled, STRETCHed or MOVEd. The World
direction is a normalized displacement that always has a unit
length.

1041. A real value that is scaled along with the parent entity.
1042. Also a real value that is scaled along with the parent.

The DXF group codes for extended entity data are also described in appendix B
of this manual and chapter 11 of the AutoCAD Customization Manual.

Entity Name and Data Functions 65

Selection Set, Entity, and Symbol Table Functions

Registering an Application

Application names are saved not only with the extended data of each entity
that uses them, but also in the APPID table. An application must register the
name or names that it uses. In AutoLISP, this is done by a call to regapp. The
regapp function simply specifies a string to use as an application name. If it
successfully adds the name to APPID, it returns the name of the application,
and nil if it can’t. A result of nil usually indicates that the name is already
present in the symbol table; this is not an actual error condition, but a nor-
mally expected return value, since the application name only needs to be reg-
istered once per drawing.

To register itself, an application should first check that its name is not already
in the APPID table, since regapp only needs to be called once per drawing. If
the name is not there, the application must register it; otherwise, it can simply
go ahead and use the data, as described in the following subsection.

Example

The following fragment shows the typical use of regapp (the tblsearch
function is described in the section “Symbol Table Access” on page 69):

(setq appname "MYAPP_2356") Unique application name
(tblsearch "appid" appname) Checks if it is already registered
{(princ (strcat "\n" appname " already registered. "))

(regapp appname) nil) Some other problem

(prine (strecat "\nCan’t register XDATA for " appname ". "))

Important: The regapp function provides a measure of security, but it cannot
guarantee that two different applications have not chosen the same name.
One way of ensuring this is to adopt a naming scheme that uses the company
or product name and a unique number (like your telephone number or the
current date/time).

Retrieving Extended Entity Data

An application can obtain the extended entity data it has registered by calling
entget. The entget function can return both the definition data and the
extended data for the applications it requests; it requires an additional argu-
ment, application, that specifies the application names. The names passed
to entget must correspond to applications that have been registered by a pre-
vious call to regapp; they can also contain wild card characters.

Examples

By default Hatch patterns contain extended entity data. The following code
allows you to see the association list of this extended entity data. Entering this
code at the command line

Command: (entget (car (entsel)) ‘("ACAD")) Select a Halfch entity
should return a list that looks something like this:

((-1 . <Entity name: 600000c0>) (0 . "INSERT") (8 . "0") (2 . "*X0") (10 0.0 0.0 0.0)
(41.1.0) (42.1.0) (50 . 0.0) (43 .1.0) (70 . 0) (71 . 0) (44 . 0.0) (45 . 0.0)
(210 0.0 0.0 1.0) (-3 ("ACAD" (1000 . "HATCH") (1002 . "{") (1070 . 16)

(1000 . "LINE") (1040 . 1.0) (1040 . 0.0) (1002 . "}"))))

66

Entity Name and Data Functions

Iiii)

i
io

Chapter 3

This fragment shows a typical sequence for retrieving extended entity data for
two specified applications. Note that the applicationargument passes appli-
cation names in list form.

(setg working elist (entget ent_name
“(("MY_APP_1") ("SOMETHING_ELSE")) Only extended data from "iy_aprp_1"

)

and "SOMETHTING_ELSE" is retrieved

(1f working elist

(progn

Updates working entity groups

(entmod working_elist) Only extended data from registered applications

)
)

still in the working_elist list are modified

As the sample code shows, extended entity data retrieved by entget can be
modified by a subsequent call to entmod, just as entmod is used to modify nor-
mal definition data (extended entity data can also be created by defining it in
the entity list passed to entmake).

Returning the extended data of only those applications specifically requested
protects one application from messing up another’s data. It also controls the
amount of memory an application needs to use, and simplifies the extended
data processing an application needs to perform.

Caution: Since the strings passed via application can include wild card char-
acters, an application name of "*" will cause entget to return all extended
data attached to an entity.

Attaching Extended Entity Data to an Entity

You can use extended entity data to store almost any type of information you
want; its use is limited only by your imagination. Following is a simple exam-
ple of attaching extended entity data to an entity.

Example

You must first draw a simple entity (e.g., Line or Circle), and then enter the fol-
lowing code:

(setq lastent (entget (entlast))) Gets the association list of definition data for
the last entity
(regapp "NEWDATA") Registers the application narme
(setqg exdata Sets the variable exdata equal to the new
*((-3 ("NEWDATA" extended entity data,
(1000 "This 18 a new thing!"))) in this case, a text string
)
)
(setq newent (append lastent exdata)) Appends the new data list to the entity’s list
(entmod newent) Modifies the entity with the new

(entget

definition data

To verify that your new extended entity data has been attached to the entity,
enter the following code and select the entity:

(car (entsel)) ' ("NEWDATA"))

Entity Name and Data Functions 67

Selection Set, Entity, and Symbol Table Functions

This example might not be the most practical use for extended entity data; it
does, however, show the basic method for attaching extended entity data to
an entity.

See also: The xdata.lsp routine in the sample/ directory.

Managing Extended Entity Data Memory Use

Extended entity data is currently limited to 16K per entity. Since the extended
data of an entity can be created and maintained by multiple applications, this
can lead to problems when the size of the extended entity data approaches its
limit. AutoLISP provides two functions, xdsize and xdroom, to assist in man-
aging the memory extended entity data occupies. When xdsize is passed a
list of extended entity data, it returns the amount of memory (in bytes) that
data will occupy; when xdroom is passed the name of an entity, it returns the
remaining number of free bytes that can still be appended to the entity.

Suggestion: The xdsize function must read an extended entity data list,
which can be large. Because of this, this function can be slow, and it is not rec-
ommended that you call it frequently. A better approach is to use it (in con-
junction with xdroom) in an error handler: if a call to entmod fails, you can
use xdsize and xdroom to find out whether the call failed because the entity
has run out of extended data, and take appropriate action if that’s the reason
it failed.

Handles in Extended Entity Data

Extended entity data can contain handles (group 1005) to save relational
structures within a drawing. One entity can reference another by saving the
other’s handle in its extended data; the handle can later be retrieved from
extended data and passed to handent to obtain the other entity. Since more
than one entity can reference another, extended data handles are not
necessarily unique; the AUDIT command does require that handles in
extended data either be nuLL or valid entity handles (within the current draw-
ing). The best way to ensure extended entity handles are valid is to obtain a
referenced entity’s handle directly from its definition data, via entget (if han-
dles are currently turned on, the handle value is in group 5).

Suggestion: To reference entities in other drawings (e.g., ones that are attached
via XREF), you can avoid protests from AUDIT by using extended entity strings
(group 1000) rather than handles (group 1005), since the handles of cross-
referenced entities are either not valid in the current drawing, or conflict with
valid handles. However, if an XREF Attach should change to an XREF Bind or
be combined into the current drawing in some other way, it is up to the appli-
cation to revise entity references accordingly.

Important: When drawings are combined via INSERT, INSERT*, XREF Bind
(XBIND), or partial DXFIN, handles are translated so they become valid in the
current drawing, as described in chapter 10 of the AutoCAD Reference Manual
(if the incoming drawing did not employ handles, new ones are assigned).
Extended entity handles that refer to incoming entities are also translated
when these commands are invoked.

When an entity is placed in a Block definition (via the BLOCK command), the
entity within the block is assigned new handles. (If the original entity is
restored via OOPS, it retains its original handles.) The value of any extended
data handles remains unchanged. When a Block is exploded (via the EXPLODE
command), extended data handles are translated, in a manner similar to the

68

Entity Name and Data Functions

Chapter 3

way they are translated when drawings are combined. If the extended data
handle refers to an entity not within the block, it is unchanged; but if the
extended data handle refers to an entity within the block, it is assigned the
value of the new (exploded) entity’s handle.

_ _"91 Table Access

The tblnext function sequentially scans symbol table entries, and the
tblsearch function retrieves specific entries. Table names are specified by
strings. The valid names are: "LAYER", "LTYPE", "VIEW", "STYLE", "BLOCK",
"ucst, "vrorT", and "arpID". Both these functions return lists with DXF
group codes, much like the entity data returned by entget.

The first call to tblnext returns the first entry in the specified table. Subse-
quent calls that specify the same table return successive entries, unless the sec-
ond argument to tblnext (rewind) is nonzero, in which case, tblnext
returns the first entry again.

Example

The function GETBLOCK shown here retrieves the symbol table entry for the
first block (if any) in the current drawing, then displays it in a list format.

({defun C:GETBLOCK (/ blk ct)

(setg blk (tbhlnext "BLOCK" 1)) Gets the first BLOCK entry

(setg ct 0) Sets ct (a counter) to O

(textpage) Switches to the text screen

(princ "\nResults from GETBLOCK: ")

(repeat (length blk) Repeats for the number of members in the list
(print (nth ct blk)) Prints a newline then each list member
{setg et (1+ ct)) Increments the counter by one

)

(princ) Exits quietly

Entries retrieved from the BLOCK table contain a -2 group that contains the
name of the first entity in the block definition. If the block is empty, this is the
name of the block’s ENDBLK entity, which is never seen on non-empty blocks.
Thus, given a drawing with a single block named BOX, a call to GETBLOCK
would print the following (the name value will vary from session to session):

Results from GETBLOCK:

(0 . "BLOCK")
(2. "BOX")
(70 . 0)

(109.0 2.0 0.0)
(-2 . <Entity name: 40000126>)

As with tblnext, the first argument to tblsearch is a string that names a
table, but the second argument is a string that names a particular symbol in
the table. If the symbol is found, tblsearch returns its data. This function
has a third argument, setnext, that can be used to coordinate operations
with tblnext. If setnext is nil, the tblsearch call has no effect on
tblnext, but if setnext is non-nil, the next call to tblnext returns the
table entry following the entry found by tblsearch.

Symbol Table Access 69

Selection Set, Entity, and Symbol Table Functions

The setnext option is especially useful when dealing with the VPORT symbol

table, because all viewports in a particular viewport configuration have the
same name (e.g., *ACTIVE).

Reminder: If the VPORT symbol table is accessed when TILEMODE is Off, any
changes will have no visible effect until TILEMODE is set back On (TILEMODE
is set either by the SETVAR command or by entering its name directly, as de-
scribed in the AutoCAD Reference Manual). Don't confuse Vports described by
the VPORT symbol table with paper-space Viewport entities.

Example

The following code will process each viewport in the configuration, 4VIEW:

(sety v (tblsearch "VBORT! Y4AVIEW®™T)) Finds first veoRT entry
(while (and v (= (edr (assoc 2 w)) "4AVIEW"))

Processes entry. . .

(setg v (tblnext "VPORT")) Gels next vPORT entry

70 Symbol Table Access

Chapter 4
AutoLISP Functions

This chapter describes all of the functions provided by AutoLISP. It consists of
a synopsis and a catalogue of the functions. In the synopsis, function names
are grouped by topic, and each is followed by a brief description. In the cata-
logue, function names appear in alphabetical order, and the functions are
described in detail.

Synopsis of Functions

AutoLISP Functions Common to ADS

Function Handling

(defun sym argument-1list expr ...)

Defines an external function (Subr).

Error Handling

(*error* string)

Prints an error message.

(alert string)

Displays a dialogue box alerting the user with string.

AutoCAD Queries and Commands

(command [arguments] ...)

Executes one or more AutoCAD commands.

(getvar varname)

Gets the current value of an AutoCAD system variable.

(setvar varname value)

Sets the value of an AutoCAD system variable.

AutoLISP Functions 71

AutolLISP Functions

(findfile filename)

Searches for a filename.

(getfiled title filename ext flags)

Prompts the user for a filename via the standard AutoCAD file
dialogue box.

(osnap pt mode-string)

Finds a point via object snap.

Geometric Utilities

(distance ptl pt2)

Finds the distance between two points.
(angle ptl pt2)

Finds the angle between two lines.
(polar pt angle dist)

Finds a point via polar coordinates.
(inters ptl pt2 pt3 ptd [onseg])

Finds the intersection of two lines.
(textbox elist)

Returns the diagonal coordinates of a box that encloses a text
entity.

User Input

(initget [bits][string])

Determines valid user input for the next call to a get xxx func-
tion.

(getreal [prompt])
Prompts for user input of a real (floating-point) number.
(getstring [cr] (prompt])

Prompts for user input of a string.

(getpoint [pt] [prompt])
Prompts for user input of a point.
(getcorner pt [prompt])

Prompts for user input of the corner of a rectangle.

72 Synopsis of Functions

Chapter 4

(getdist [pt] (prompt])

Prompts for user input of a distance.

(getangle [pt] [prompt])

Prompts for user input of an angle.

(getorient [pt] [prompt])

Similar to getangle, but takes into account the current value
of the ANGBASE system variable.

(getkword [prompt])
Prompts for user input of a keyword.

(getint [prompt])

Prompts for user input of an integer.

Conversion

(rtos number [mode [precision]])

Formats a real (floating-point) value as a string.

(distof string [mode])

Converts a string that displays a real value into a real (floating-
point) value.

(angtos angle [mode [precision]])

Formats an angle as a string.

(angtof string [mode])

Converts a string that displays an angle into a real (floating-
point) value.

(cvunit value from to)

Converts between real-world units.

Coordinate System Transformation

(trans pt from to [disp])

Translates a point or displacement from one coordinate system
to another.

Digitizer Calibration

(tablet code [rowl row2 row3 direction])

Controls digitizer calibration.

Synopsis of Functions 73

AutolLISP Functions

Display Control
(prinl [expr [file-desc]])
Prints a message on the text screen or to an open file.
(princ [expr [file-desc]])
Prints a message on the text screen or to an open file.

(print [expr [file-desc]])

Prints a message on the text screen or to an open file.

(prompt msg)

Displays a message on the prompt line.

(menucmd string)

Displays and activates menus.

(redraw [ename [mode]])

Redraws the current graphics screen.

(graphscr)

Displays the current graphics screen.
(textscr)

Displays the current text screen.
(textpage)

Same as textscr, but clears the text screen first.

Low-level Graphics
(grclear)
Clears the graphics screen.

(grdraw from to color [highlight])

Draws a vector in the current viewport.

(grvecs viist [trans])

Draws multiple vectors in the current viewport.

(grread [track] [allkeys [curtype]l)

Reads from an input device.

(grtext [box text [highlight]])

Displays text in the menu, mode, or status area of the graphics
screen.

74 Synopsis of Functions

Chapter 4

Wild Card Matching

(wematch string pattern)

Matches a string to a wild card pattern.

Selection Sets
(ssget [mode] [ptl [(pt2]](pt-list][filter-1ist])
Gets a selection set.

(ssadd [ename [ss]])

Adds an entity to a selection set (or creates a new set).

(ssdel ename ss)

Deletes an entity from a selection set.

(eslength ss)

Returns the number of entities in a selection set.

(gssname ss lndex)

Returns the name of an entity in a selection set.

(ssmemb ename s5s)

Checks whether an entity is a member of a selection set.

Entity Handling

(entget ename [applist])

Gets the definition data of an entity.

(entmod elist)

Modifies the definition data of an entity.

(entmake [elist])

Makes a new entity and appends it to the drawing database.

(entdel ename)

Deletes (and undeletes) entities in the drawing.

(entnext [ename])

Finds the next entity in the drawing.

(entlast)

Finds the last entity in the drawing.

(handent handle)
Finds an entity by its handle.

Synopsis of Functions

75

AutolISP Functions

(entsel [prompt])

Prompts user to select an entity by specifying a point.

(nentsel [prompt])

Like entsel, but returns additional data for nested entities.

(nentselp [prompt] [pt])

Similar to nentsel but returns a full 3D 4x4 matrix and
enables the program to specify the pick point.

(entupd ename)

Updates the screen image of an entity.

Extended Entity Data

(regapp application)

Registers the application’s extended entity data.

(xdsize 11st)

Returns the amount of memory (in bytes) that a list of
extended entity data will occupy.

(xdroom ename)

Returns the amount of memory (in bytes) that an entity has
available for extended data.
Symbol Tables

(tblnext table-name [rewind])

Finds the next item in a symbol table.

(tblsearch table-name symbol [setnext])

Searches for a symbol in a symbol table.

General Functions

Arithmetic
(+ number number ..)
Returns the sum of all numbers.
(- number [number ... 7)

Subtracts the second number from the first and returns the dif-
ference.

76 Synopsis of Functions

Chapter 4

(* number [number ...])

Returns the product of all numbers.

(/ number [number ...]J)

Divides the first number by the second and returns the quo-
tient.

(~ number)

Returns the bitwise NOT of number.

(1l+ number)

Returns number incremented by 1.

(1- number)

Returns number decremented by 1.

(abs number)

Returns the absolute value of number.

(atan numl [num2])

Returns the arctangent of a number in radians.

(cos angle)

Returns the cosine of an angle.

(exp number)

Returns a value raised to the number power (natural antilog).

(expt base power)

Returns base raised to power.

(fix number)

Returns the conversion of a number into an integer.

(float number)

Returns the conversion of a number into a real value.

(ged numl numZ2)

Returns the greatest common denominator of two numbers.

(log number)

Returns the natural log of a number as a real value.

(logand number number ...)

Returns the result of a logical bitwise AND of a list of numbers.

(logior integer ...)

Returns the result of a logical bitwise inclusive OR of a list of
numbers.

Synopsis of Functions 77

AutoLISP Functions

(1sh numl numbits)

Returns the logical bitwise shift of a number by a given num-
ber of bits.

(max number number ...)

Returns the largest of the numbers given.
(min number number ...)

Returns the smallest of the numbers given.
(minusp item)

Verifies that item is a real or integer and evaluates to a nega-

tive value.
pi

Evaluates to constant .
(rem numl nun2 ...)

Divides two numbers and returns the remainder.
(sin angle)

Returns the sine of an angle as a real value.
(sgrt number)

Returns the square root of a number as a real value.
(zerop 1tem)

Verifies that icem is a real number or an integer that evaluates
to zero.

Symbol Handling

(atom item)

Verifies that i tem is an atom.
(atoms-family format [symlist])

Returns a list of previously defined functions.
(boundp atom)

Verifies that a value has been bound to an atom.
(not item)

Verifies that i temisnil.
(null item)

Verifies that itemis bound to nil.

78 Synopsis of Functions

Chapter 4

(numberp item)

Verifies that itemis a real or an integer.
(quote expr ...)

Returns an expression unevaluated.
(set sym expr)

Sets the value of a quoted symbol to that of an expression.
(setg syml exprl [sym2 expr2] ...)

Sets the value of one or more symbols to that of an expression.
(type item)

Returns the type of item.

Text Strings

(read string)

Returns the first list or atom obtained from the string.

(read-char [file-desc])

Reads a single character from the keyboard or from an open
file.

(read-line [file-desc])

Reads a string from the keyboard or from an open file.

(strcase string (which])

Returns a copy of a string with all characters converted to
upper or lowercase.

(8trcat stringl {string2] .«)

Returns the concatenation of one or more strings.

(strlen' [fstring] «:.)

Returns the length, in characters, of a string.

(substr string start [lengthl])

Returns a substring of a string.

(write-char num [file-desc])

Writes one character, described by an ASCII code, to the screen
or an open file.

(write-line string [file-desc])

Writes a string to the screen or to an open file.

Synopsis of Functions 79

AutoLISP Functions

Conversion

(ascii string)

Returns the conversion of the first character of a string into ifs
ASCII character code.

(atof string)

Returns the conversion of a string into a real value.

(atoi string)

Returns the conversion of a string into an integer.

(chr integer)

Returns the conversion of an integer representing an ASCIl
character code into a single-character string.

(itoa int)

Returns the conversion of an integer into a string.

Equality/Conditional
(= atom atom ...) 4
The equal to relational function.

(/= atom atom ...)

The not equal to relational function.

(< atom atom ...)

The less than relational function.

(<= atom atom ...)

The less than or equal to relational function.

(> atom atom ...)

The greater than relational function.

(>= atom atom ...)

The greater than or equal to relational function.

(and expr ...)

Returns the logical AND of a list of expressions.

(Boole func intl int2 Beian)

A general bitwise Boolean function.

(cond (testl resultl P it |

Primary conditional function in AutoLISP,

80 Synopsis of Functions

Chapter 4

(eqg exprl expr2)

Determines whether two expressions are identical.

(equal exprl expr2 [fuzz])
Determines whether two expressions evaluate to the same
thing.

(if testexpr thenexpr [elseexpr])

Conditionally evaluates expressions.

tor expr'...)
Returns the logical OR of a list of expressions.

(repeat number expr ...)

Evaluates each expression a given number of times.

(while testexpr expr ...)

| Repeats the enclosed expressions while the test expression
remains true.
'l

List Manipulation

(append expr ...)

Takes any number of lists and runs them together as one list.

(assoc item alist)

Searches an association list using 7 temas a key, and returns the
associated entry.

(car 1ist)

Returns the first element of a list.

(cdr list)

Returns a list containing all but the first element of the list.

(caar list), (cadr 1ist), (eddr list), (cadar Ilist), etc.

P Concatenations up to four levels deep are supported.

(cons new-first-element list)

Returns a list with the new element added to the beginning.

(foreach name list expr ...)

Steps through a list and evaluates each expression for every ele-
ment in the list.

(list expr ...)

Creates a list from any number of expressions.

Synopsis of Functions 81

AutoLISP Functions

(listp item)

Verifies that itemis a list.

{(mapcar functien Iistl ... Idistn)

Returns a list as the result of executing a function with the ele-
ments of lists supplied.

(member expr list)

Searches a list for an occurrence of an expression and returns
the remainder of the list starting with the first occurrence of
the expression.

(nth' o Trst)

Returns the nth element of a list.

(reverse Ilist)

Returns a list with its elements reversed.

(subst newitem olditem 1list)

Returns a copy of a list with newitem in place of every
olditem.

File Handling
(close file-desc)
Closes a file.

(load filename ([onfailure])

Loads a file of AutoLISP expressions.

(open filename mode)

Opens a file for access by the AutoLISP I/O functions.

ADS Application Handling

(ads)

Returns a list of the currently loaded AutoCAD Development
System (ADS) applications.

(xload application [onfailure])

Loads an ADS application.

(xunload application [onfailure])

Unloads an ADS application.

82 Synopsis of Functions

Chapter 4

Display
(terpri)
Prints a newline on the screen.

(vports)

Returns a list of viewport descriptors for the current viewport
configuration.

Function Handling

(apply function 1ist)

Executes a function with the arguments given.

(eval expr)

Returns the result of evaluating any AutoLISP expression.

(exit)

Forces the current application to quit.
(lambda arguments expr ...)

Defines an anonymous function.
(progn expr ...)

Evaluates each expression sequentially.
(trace function ...)

Sets the trace flag for the specified functions.
(quit)

Forces the current application to quit.
(untrace function ...)

Clears the trace flag for specified functions.

Memory Management

(alloc number)

Sets the segment size to a given number of nodes.

(expand number)
Allocates node space by requesting a specified number of seg-
ments.

(ge)

Forces a garbage collection.

Synopsis of Functions 83

AutolISP Functions

(mem)

Displays the current state of AutoLISP’s memory.

Miscellaneous

(getenv variable-name)

Returns the string value assigned to a system environment
variable.

(ver)

Returns a string containing the current AutoLISP version.

ADS Defined AutoLISP Functions

(acad_colordlg colornum [flag])
Displays the standard AutoCAD colour selection dialogue.

(acad_helpdlg helpfile topic)
Displays the standard AutoCAD Help dialogue.

(acad_strlsort Iist)

Sorts a list of strings.

ADS Defined Commands

(c:bhatch pt [ss [vector]])

Calls the BHATCH command and performs a boundary hatch
on the specified area.

(c:bpoly pt [ss [vector]])

Calls the BPOLY command and creates a boundary Polyline.

(bherrs)

Gets an error message generated by a failed call to ¢c:bhatch
or c:bpoly.

(c:psdrag mode)

Calls the PSDRAG command and sets the integer value mode.

(c:pefill ent pattern argl [arg2] ..)
Fills a Polyline with a Postscript fill pattern.

(c:pein filename position scale)

Inserts an encapsulated Postscript file.

84 Synopsis of Functions

Chapter 4

Programmable Dialogue Box Functions

Detailed explanations of the following AutoLISP functions, which handle
user-defined, customized dialogue boxes, are available in chapter 9 of the
AutoCAD Customization Manual

This section summarizes the functions in the Programmable Dialogue Box
(PDB) package, grouping them by functionality. These functions call an asso-
ciated DCL (Dialogue Control Language) file to display the desired dialogue
box. It shows the arguments to each function.

Opening and Closing DCL Files

(load_dialog filename)

Loads the specified DCL file.

(unload_dialog dcl_id)
Unloads the specified DCL file.

Opening and Closing Dialogue Boxes

(new_dialog dlgname dcl_id [[action-expression] screen-pt])

Initializes a dialogue box and displays it.

(start_dialog)
Begins accepting user input from the dialogue box initialized
by the new_dialog call.

(done_dialog [status])

Terminates the current dialogue box and stops displaying it.
Must be called from within an action expression or callback
function. This function also returns the current (X,Y) position
of the dialogue box.

(term_dialog)

Terminates all current dialogue boxes as if the user had can-
celled them.

‘Initializing Action Expressions or Callback Functions

(action_tile key action-expression)

Associates the specified tile with the action expression or call-
back function.

Handling Tiles and Attributes

(mode_tile key mode)
Sets the mode of the specified tile.

Synopsis of Functions 85

AutoLISP Functions

(get_attr key attribute)
Gets the DCL value of the specified attribute.

(get_tile key)

Gets the run-time value of the specified tile.

(set_tile key value)

Sets the run-time value of the specified tile.

Setting Up List Boxes and Popup Lists
(start_list key [operation [index]])
Starts processing the specified list box or popup list.
(add_1list item)

Adds the specified string to the current list.

(end_1list)

Ends processing of the current list.

Creating Images

(dimx_tile key)
(dimy tile key)

Retrieves dimensions of the specified tile.
(start_image key)

Starts creating the specified image.
(vector_image xI1 yI1 x2 y2 color)

Draws a vector in the currently active image.
(£il11_image xI1 yl1 x2 y2 color)

Draws a filled rectangle in the currently active image.
(slide_image x1 y1 x2 y2 sldname)

Draws an AutoCAD slide in the currently active image.
(end_image)

Ends creation of the currently active image.

Application-specific Data

(client_data_tile key clientdata)

Associates application-managed data with the specified tile.

86 Synopsis of Functions

Chapter 4
Catalogue of AutoLISP Functions

This section contains a description of the basic AutoLISP functions.

(+ number number ...)

This function returns the sum of all numbers. You can use it with real numbers
or integers. If all the numbers are integers, the result is an integer; if any of the
numbers are real numbers, the integers are promoted to real numbers and the
result is a real number. For example:

(+ 1 2) returns 3
(+ 1 2 3 4.5) returns 10.5
(+ 1 2 3 4.0) returns 10.0

(- number [number] ...)

This function subtracts the second number from the first and returns the dif-
ference. If more than two numbers are given, the sum of the second through
last is subtracted from the first, and the final result is returned. If only one
number is given, the result of subtracting it from zero is returned. You can use
this function with reals or integers, with standard rules of promotion. For

example:
(- 50 40) returns 10
(- 50 40.0 2) returns 8.0
(- 50 40.0 2.5) returns 7.5
(- 8) returns -8

(* number [number] ...)

This function returns the product of all numbers. You can use this with reals
or integers, with standard rules of promotion. If only one number is given, the
result of multiplying it by 1 is returned. For example:

(* 2 3) returns 6
(* 2 3 4.0) returns 24 .0
(* 3 -4.5) returns -13.5
(* 3) returns 3

Catalogue of AutolISP Functions 87

AutoLISP Functions

(/ number [number] ...)

This function divides the first number by the second and returns the quotient.
If more than two numbers are given, it divides the first number by the product
of the second through last, and returns the final quotient. You can use this
with reals or integers, with standard rules of promotion. If only one number is

given, the result of dividing it by 1 is returned. Examples follow:

(= atom atom ...)

(/ 100 2) returns 50

(/ 100 2.0) returns 50.0
(/ 100 20.0 2) returns 2.5
(/ 100 20 2) returns 2

(/ 135 360) returns 0

(/ 135 360.0) returns 0.375
(/ 4) returns 4

This is the equal to relational function. It returns T if all the specified atoms are
numerically equal, and ni1 otherwise. This function is valid for numbers and

strings. These are examples:
(= 4 4.0) returns T
(= 20 388) returns nil
(= 2.4 2.4 2.4) returns T
(= 499 499 500) returns nil
(= "me" "me") returns T
(= "me" "you") returns nil

Related topics: Compare this function with the eq and equal functions start-
ing on page 112.

(/= atom atom ...)

This is the not equal to relational function. It returns T if atom1 is not numer-
ically equal to atom2, and nil if the two atoms are numerically equal. The
function is undefined if more than two arguments are supplied. For example:

(/= 10 20) returns T
(/= "you" "you") returns nil
(/= 5.43 5.44) returns T

(< atom atom ...)

This is the less than relational function. It returns T if the first atomis numer-
ically less than the second, and nil otherwise. If more than two atoms are
given, it returns T if each atom is less than the atom to its right. For example:

(< 10 20) returns T
(< "b" "c") returns T
(< 357 33.2) returns nil
(< 2 3 88) returns T
(< 2 3 4 4) returns nil

88 Catalogue of AutolISP Functions

Chapter 4

(<= atom atom ...)

This is the less than or equal to relational function. It returns T if the first atom
is numerically less than or equal to the second, and nil otherwise. If more
than two atoms are given, it returns T if each atom is less than or equal to the
atom to its right. For example:

(<= 10 20) returns T
(<= "b" "b") returns T
(<= 357 33.2) returns nil
(<= 2 9 9) returns T
(<= 2 9 4 5) returns nil

(> atom atom ...)

This is the greater than relational function. It returns T if the first atom is
numerically greater than the second, and nil otherwise. If more than two
atoms are given, it returns T if each atom is greater than the atom to its right.
For example:

(> 120 17) returns T
(> "¢" "b") returns T
(> 3.5 1792) returns nil
(> 77 4 2) returns T
(> 77 4 4) returns nil

(>= atom atom ...)

This is the greater than or equal to relational function. It returns T if the first
atomis numerically greater than or equal to the second, and nil otherwise. If
more than two atoms are given, it returns T if each atom is greater than or
equal to the atom to its right. For example:

(»>= 120 17) returns T
(>= "c" "c") returns T
(>= 3.5 1792) returns nil
(>= 77 4 4) returns T
(>= 77 4 9) returns nil

(~ number)

This function returns the bitwise NOT (one’s complement) of number. The
number argument must be an integer. For example:

(~ 3) returns -4
(~ 100) returns -101
(~ -4) returns 3

Catalogue of AutolISP Functions 89

AutolISP Functions

(1+ number)
This function returns number increased by 1 (incremented). The number argu-
ment can be a real or an integer. For example:

(1+ 5) returns 6
(1+ -17.5) returns -16.5

(1- number)

This function returns number reduced by 1 (decremented). The number argu-
ment can be a real or an integer. For example:

(1- 5) returns 4
(1- -17.5) returns -18.5

(abs number)

This function returns the absolute value of number. The number argument can
be a real or an integer. For example:

(abs 100) returns 100
(abs -100) returns 100
(abs -99.25) returns 99.25
(ads)
Returns a list of the currently loaded AutoCAD Development System (ADS)
applications. Each application and its path is a quoted string in the list. For
example:
(ads) might return ("files/progs/PROG1" "PROG2")
Related topics: See the x1oad and xunload functions starting on page 171.
(alert string)

Displays an alert box with the error or warning message passed in the string
argument. An alert box is a dialogue box with a single OK button. For example:

(alert "That function is not available.")

You can display multiple lines by using the newline character in string.
(alert "That function\nis not available.")
Note: Line length and the number of lines in an alert box are platform, device,

and window dependant. AutoCAD truncates any string too long to fit inside
an alert box.

90 Catalogue of AutoLISP Functions

Chapter 4

(alloc number)

Sets the segment size to a given number of nodes. See “Manual Allocation” on
page 179 for more information on alloc.

(and expr ...)

This function returns the logical AND of a list of expressions. It ceases further
evaluation and returns nil if any of the expressions evaluate tonil; otherwise
it returns T. For example, given the following assignments:

(setg a 103) (setqg b nil) (setqg c "string")

then
(and 1.4 a c) returns T
(and 1.4 a b <) returns nil
(angle pt1 pt2)

This function returns the angle of a straight line running from UCS point pt1
to UCS point pt2. The angle is measured from the X axis of the current con-
struction plane, in radians, with angles increasing in the counterclockwise
ditection. If 3D points are supplied, they are projected onto the current con-
struction plane. For example:

(angle " (1.0 1.0) (1.0 4.0)) returns 1.5708
(angle ’ (5.0 1.33) 7 (2.4 1.33)) returns 3.14159

See also: “Geometric Utilities” on page 25.

(angtof string [mode])

Converts st ring, which represents an angle in the display format specified by
mode, into a floating-point value. The angtof function returns the result

expressed in radians.
The mode argument specifies the units in which the string is formatted. The

value should correspond to values allowed for the AutoCAD system variable
AUNITS, as shown below. If mode is omitted, angtof uses the current value of

AUNITS.
Table 4-1. Angular units values
Mode value ﬁtring format
0 Degrees
1 Degrees/minutes/seconds
2 Grads
3 Radians
4 Surveyor’s units

Catalogue of AutoLISP Functions ' 91

AutoLISP Functions

The string must be a string that angtof can parse correctly according to the
specified mode. It can be in the same form that angtos would return, or ina
form that AutoCAD allows for keyboard entry. The angtof and angtos func-
tions are complementary: if you pass angtof a string created by angtos,
angtof is guaranteed to return a valid value, and vice versa (assuming the
mode values match).

If angtof succeeds, it returns a real value in radians; otherwise, it returns nil.

(angtos angle [mode [precision]])

The angtos function takes angle (a real number, in radians) and returns it
edited into a string according to the settings of mode, precision, the
AutoCAD UNITMODE system variable, and the DIMZIN dimensioning variable.
The mode and precision arguments are integers that specify the angular
units mode and precision. The supported mode values are the same as those
shown in table 4-1 (see the previous function description).

The precision argument is an integer that selects the number of decimal
places of precision desired. The mode and precision correspond to the
AutoCAD system variables AUNITS and AUPREC. If you omit these arguments,
angtos uses the current settings of AUNITS and AUPREC, respectively.

The angtos function accepts a negative angle argument, but always reduces
it to a positive value between zero and 2r radians before performing the spec-
ified conversion. For example:

(angtos 0.785398 0 4) returns w45 .0000"
(angtos -0.785398 0 4) returns "315.0000"

The UNITMODE variable affects the returned string when surveyor’s units are
selected (a mode value of 4). If UNITMODE = 0, spaces are included in the string
(for example, "N 45d E"); if UNITMODE = 1, no spaces are included in the string
(for example, "N45dE").

Note: Routines that use the angtos function to display arbitrary angles (those
not relative to the value of ANGBASE) should check and consider the value of
ANGBASE.

See also: “String Conversions” on page 33.

(append expr ...)

This function takes any number of lists (expr) and runs them together as one
list. For example:

(append ’ (a
(

b) " (c d) returns (A
(append ' ((a) ((

) B C D)
(b)) “((c)(d))) returns ((A) (B) (C) (D))

a

The append function requires that its arguments be lists.

92 Catalogue of AutoLISP Functions

Chapter 4

(apply function list)

Executes the function specified by function with the arguments given by
list. For example:

returns 6
returns "abc"

(apply '+ (1 2 3))
(apply lstrcat I (uan ubu llcll))

The apply function works with both built-in functions (subrs) and user-
defined functions (those created with either defun or lambda).

(ascii string)

This function returns the conversion of the first character of string into its
ASCII character code (an integer). This is similar to the asc function in the
BASIC® language. For example:

(ascii "A") returns 65
(ascii "a") returns 97
(ascii "BIG") returns 66

(assoc item alist)

This function searches the association list alist for item as the key element
and returns the alist entry. If itemis not found as a key in alist, assoc
returns nil. For example, assuming that list al is defined as

((name box) (width 3) (size 4.7263) (depth 5))

then

(assoc ’'size al)
(assoc 'weight al)

returns (SIZE 4.7263)
returns nil

Association lists are frequently used for storing data that can be accessed by a
key. This is similar to arrays or structures in other programming languages. The
subst function, described later in this chapter, provides a convenient means
of replacing the value associated with one key in an association list.

(atan num1 [num?2))

If num2 is not supplied, atan returns the arctangent of num1, in radians. numi
can be negative; the range of angles returned is —n/2 to +n/2 radians. For exam-
ple:

(atan 0.5) returns 0.463648
(atan 1.0) returns 0.785398
(atan -1.0) returns -0.785398
(angtos (atan -1.0) 0 4) returns "315.0000"

Catalogue of AutolISP Functions 93

AutolISP Functions

If both numl and num2 are supplied, it returns the arctangent of numl/num2,
in radians. If num2 is zero, it returns an angle of plus or minus 1.570796 radi-
ans (+90° or -90 °), depending on the sign of num1. For example:

(atan 2.0 3.0) returns 0.588003
(angtos (atan 2.0 3.0) 0 4) returns "33.6901"
(atan 2.0 -3.0) returns 2.55359
(angtos (atan 2.0 -3.0) C 4) returns "146.3099"
(atan -2.0 3.0) returns -0.588003
(atan -2.0 -3.0) returns -2.55359
(atan 1.0 0.0) returns 1.5708
(angtos (atan 1.0 0.0) 0 4) returns "90.0000"
(atan -0.5 0.0) returns -1.5708
(angtos (atan -0.5 0.0) 0 2) returns "270.00"

Note: The angtos calls shown above illustrate a method of converting the
radian value returned from atan into a string value.

(atof string)
This function returns the conversion of st ring into a real. For example:
(atof "97.1") returns 97.1
(atof "3") returns 3.0

(atoi string)

This function returns the conversion of string into an integer.

(atol "97") returns 97
(atoi "3") returns 3
(atoi "3.9") returns 3

(atom itemn)

This function returns nil if i temis a list, and T otherwise. Anything that’s not
a list is considered an atom. For example, given the assignments

(setg a "(x vy z))

(setg b 'a)

then
(atom ‘a) returns T
(atom a) returns nil
(atom ‘b) returns T
(atom b) returns T
(atom ' (a b c)) returns nil

Some versions of LISP differ in their interpretation of atom, so take care when
using converted code.

94

Catalogue of AutoLISP Functions

Chapter 4

(atoms-family format [symlist])

This function returns a list of the built-in symbols and any other symbols
defined in the current session. The first argument format is an integer value
of O or 1. If the value of format is 0, a list of the currently defined symbols is
returned; if format is 1, the symbols in the list are returned as strings.

(atoms-family 0) returns a list of the currently defined symbols

The atoms-family function will also search for a list of symbol names. The
symlist argument, if supplied, must be a list of strings that specify the sym-
bol names to search for. If you want to verify that the symbols "CaAR", "CDR",
and "xyz" have been defined, and you want the list returned as strings, you
enter the following:

(atoms-family 1 * ("CAR" "CDR" "XYZ"))

The atoms-family function returns a list of the type specified by format
(symbols or strings) containing the names of the symbols that are defined and
nil for those that are not defined. Assuming the symbol "xvz" has not been
defined, the following list is returned:

("CAR"™ "CDR" nil)
Caution: Prior to Release 12 of AutoCAD, atomlist was a symbol that could

be redefined (chopped) or deleted. If you have any AutoLISP routines that used
atomlist as a symbol, they will no longer function properly.

(Boole func intl int2 ...)

This is a general bitwise Boolean function. The func argument is an integer
between 0 and 15 representing one of the 16 possible Boolean functions in two
variables. Successive integer arguments are bitwise (logically) combined based
on this function and the following truth table:

Table 4-2. Boolean truth table

Int1 Int2 Func bit
0 0 8
0 1 4
1 0 2
1 1 1

Each bit of int1 pairs with the corresponding bit of int2, selecting one hori-
zontal row of the truth table. The result bit is either 0 or 1, depending on the
setting of the func bit corresponding to this row of the truth table.

Catalogue of AutoLISP Functions 95

AutolISP Functions

If the appropriate bit is set in func, the result bit is 1, otherwise the result bit
is 0. Some of the values for func are equivalent to the standard Boolean oper-
ations AND, OR, XOR, and NOT. These are shown here:

Table 4-3. Boole function bit values

Func Operation Result bitis 1if....

1 AND Both input bits are 1

6 XOR Only one of the two input bits is 1

7 OR Either or both of the input bits are 1

8 NOT Both input bits are zero (1’s complement)
Examples

The following specifies a logical AND of the values 12 and 5:

(Boole 1 12 5) returns 4

Similarly, to specify a logical XOR of the values 6 and 5:

(Boole 6 6 5) returns 3

You can use other values of func to perform other Boolean operations for
which there are no standard names. For example, if func is 4, the result bits
are set if the corresponding bits are set in int2 but not in int1. Thus

(Boole 4 3 14) returns 12

(boundp atom)

This function returns T if at om has a value bound to it (regardless of scope). If
no value is bound to atom (or it has been bound to nil), boundp returns nil.
If atom is an undefined symbol, it is automatically created and is bound to
nil. For example, given these assignments:

(setqg a 2) (setg b nil)
then

(boundp ’a) returns T
(boundp ’'b) returns nil

The atoms-£family function provides an alternate method of determining
the existence of a symbol without automatically creating the symbol.

(car list)

This function returns the first element of I1ist. If 1ist is empty, it returns
nil. For example:

(car "(a b <)) returns A
(car '((a b) <)) returns (A B)
(car ' (})) returns nil

96

Catalogue of AutoLISP Functions

(cdr list)

Chapter 4

This function returns a list containing all but the first element of 1ist.If 1ist
is empty, it returns nil. For example:

(cdr '{(a b c)) returns (B C)
(cdr ‘{(a b) c)) returns (C)
(cdr " ()) returns nil

When the 1ist argument is a dotted pair (see the cons function on page 100),
cdr returns the second element without enclosing it in a list. For example:

(cdr ‘{(a . b)) returns B
(cdr ‘(1 . "Text")) returns "Text"

(caar list), (cadr list), (cddr list), (cadar list), etc.

AutoLISP supports concatenations of car and cdr, up to four levels deep. For
example, given this assignment:

(setg x '((a b) c d})
then

caar x) is equivalent to (car (car x)) returning A
cdar x) is equivalent to (cdr (car x)) returning (B)
cadar x) is equivalent to (car (cdr (car x))) returning B
cadr x) is equivalent to {car {cdr x)) returning C
cddr x) is equivalent to (cdr (cdr x)) returning (D)
caddr x) is equivalent to (car (cdr (cdr x))) returning D

(
(
{
(
(
(

In AutoLISP, cadr is frequently used to obtain the Y coordinate of a 2D or 3D
point (the second element of a list of two or three reals). Likewise, caddr can
be used to obtain the Z coordinate of a 3D point. For instance, given these
assignments:

(setg pt2 7(5.25 1.0)) a 2D point
(setqg pt3 '(5.25 1.0 3.0)) a 3D point
then

(car pt2) returns 5.25
(cadr pt2) returns 1.0
(caddr pt2) returns nil
(car pt3) returns 5.25
(cadr pt3) returns 1.0
(caddr pt3) returns 3.0

(chr integer)

This function returns the conversion of an integer representing an ASCII char-
acter code into a single-character string (similar to the chr$ function in the
BASIC language). For example:

(chr 65) returns "A"
(chr 66) returns "B"
(chr 97) returns ra"

Catalogue of AutoLISP Functions 97

AutolISP Functions

(close file-desc)

This function closes a file and returns nil. The fiJle-desc argument is a file
descriptor obtained from the open function. After a close, the file descriptor
is unchanged, but is no longer valid.

For example, assuming that x is a valid open file descriptor:

(close x) closes the associated file and returns nil

(command [arguments] ...)

This function executes AutoCAD commands from within AutoLISP and always
returns nil. The arguments represent AutoCAD commands and their subcom-
mands.

The command function evaluates each argument and sends it to AutoCAD in
response to successive prompts. It submits command names and options as
strings, 2D points as lists of two reals, and 3D points as lists of three reals.
AutoCAD recognizes command names only when it issues a Command:
prompt.

(setg ptl (1 1) pt2 {1 5))
(command "line" ptl ptl "")

The arguments to the command function can be strings, reals, integers, or
points, as expected by the prompt sequence of the AutoCAD command being
executed. A null string (" ") is equivalent to entering on the keyboard.
Invoking command with no argument is equivalent to pressing (Ctr)+(C), and
cancels most AutoCAD commands.

Commands executed from the command function are not echoed to the screen
if the AutoCAD system variable CMDECHO (accessible from setvar and
getvar) is set to zero. The command function is the basic method of AutoCAD
command access from AutoLISP.

Note: The getxxx user-input functions (getangle, getstring, getint,
getpoint, etc.) cannot be used inside the command function. An attempt to
do so results in the message:

error: AutoCAD rejected function

and termination of the function in progress. If user input is needed, issue the
getxxx functions beforehand, or place them between successive command
function calls.

For AutoCAD commands that require the selection of an object (like the BREAK
and TRIM commands), you can supply a list obtained with entsel instead of
a point to select the object. For examples see, “Passing Pick Points to AutoCAD
Commands” on page 22.

Restrictions: The AutoCAD DTEXT and SKETCH commands read the keyboard
and digitizer directly and therefore cannot be used with the AutoLISP command
function. If the SCRIPT command is used with the command, function it should
be the last function call in the AutoLISP routine.

98 Catalogue of AutoLISP Functions

Chapter 4

If an AutoCAD command is in progress and the predefined symbol paUsE is
encountered as an argument to the command function, the command function
is suspended to allow direct user input.

* The pause symbol is defined as a string consisting of a single backslash.
You can use a backslash directly, rather than using the pause symbol. How-
ever, if the command function is invoked from a menu item, the backslash
suspends the reading of the menu item, which results in partial evaluation
of the AutoLISP expression. Also, the pause mechanism might require a
different trigger value in future versions of AutoLISP, so we recommend
always using the pause symbol rather than an explicit backslash.

Reminder: When a backslash is used in a string, it must be preceded by an-
other backslash (i.e., "\\").

e If pausk is encountered when a command is expecting input of a text
string or an Attribute value, AutoCAD pauses for input only if the system
variable TEXTEVAL is nonzero. Otherwise, the value of the pause symbol (a
single backslash) is taken as the text and does not cause a pause for input.

* When the command function has paused for user input, the function is still
considered active, so the user cannot enter another AutoLISP expression to
be evaluated.

Following is an example of a use of the pause symbol:

(setqg blk "MY_BLOCK")

(setg old_lay (getvar "clayer"))
(command "layer" "set" "NEW_LAY" "")
(command "insert" blk pause "" "" pause)
(command "layer" "set" old_lay "")

The preceeding code fragment would set the current layer to NEW_LAY, pause
for user selection of an insertion point for the Block, MY_BLOCK—which would
be inserted with X and Y scale factors of 1—and pause again for user selection
of a rotation angle; the current layer would then be reset to the original layer.

If the command function specifies a pausE to the SELECT command and a
PICKFIRST set is active, the SELECT command obtains the PICKFIRST set without
pausing for the user.

Note: The Radius and Diameter subcommands of the Dim: prompt issue addi-
tional prompts in some situations. This can cause a failure of AutoLISP pro-
grams written prior to Release 11 that use these commands.

See also: “Command Submission” on page 21 for more information on the
command function.

(cond (testl resultl ...) ...)

This function accepts any number of lists as arguments. It evaluates the first
item in each list (in the order supplied) until one of these items returns a value
other than nil. It then evaluates those expressions which follow the test that
succeeded and returns the value of the last expression in the sublist. If there is
only one expression in the sublist (i.e., result is missing), the value of the
test expression is returned. The cond function is the primary conditional
function in AutoLISP.

Catalogue of AutoLISP Functions 99

AutolLISP Functions

For example, the following uses cond to perform an absolute value calcula-
tion:

(cond ((minusp a) (- a))
(t a)
)

If the variable a is set to the value -10, this returns 10. As shown, cond can be
used as a case type function. It is common to use T as the last (default) test
expression. Here’s another simple example. Given a user response string in the
variable s, this function tests the response and returns 1 if it is Y or v, 0 if it is
N or n, and nil otherwise.

(cond

I
O O

{({
{({
(
((
(t

1
H-wmwnon

nil)

(cons new-first-element list)

(cos angle)

This is the basic list CONStructor. It takes an element (new-first-element)
and a 1ist, and returns the addition of that element to the beginning of the
list. For example:

(cons 'a (b c 4d)) returns (A B C D)
) B C

{(cons “(a) ‘(b ¢ 4)) returns ((A D)

The first element can be an atom or a list.

The cons function also accepts an atom in place of the 1ist argument, con-
structing a structure known as a dotted pair. When displaying a dotted pair,
AutoLISP prints a period, or dot, between its first and second elements. You
can use the cdr function to return the second atom of a dotted pair. Thus

(cons 'a 2) returns (A . 2)
(car (cons ’a 2)) returns A
(cdr (cons ’'a 2)) returns 2

A dotted pair is a special kind of list, and is not accepted as an argument by
some functions that handle ordinary lists.

This function returns the cosine of angle, where angle is expressed in radi-
ans. For example:

(cos 0.0) returns 1.0
(cos pil) returns -1.0

100 Catalogue of AutoLISP Functions

Chapter 4 il 1

(cvunit value from to) I

This function converts a value or point from one unit of measurement to N
another. If successful, it returns the converted value or point. If either unit :
name is unknown (not found in the acad.unt file) or if the two units are dimen-

sionally incompatible (as in converting grams into years), nil is returned.

The value argument is the numeric value you want to convert. It can also be
a list containing two or three numbers to be converted (a 2D or 3D point). The
fromargument is the unit that the value is being converted from and to is the \,
unit that the value is being converted into. The from and to arguments can .
name any unit type found in the acad.unt file.

Examples
(cvunit 1 "minute" "second") returns 60.0
{cvunit 1 "gallon" "furlong") returns nil :
(cvunit 1.0 "inch" "cm") returns 2.54
(cvunit 1.0 "acre" "sqg yard") returns 4840.0
(cvunit (1.0 2.5) "ft" "in") returns (12.0 30.0)

(cvunit (1 2 3) "ft" m"in") returns (12.0 24.0 36.0)

Suggestion: If you have several values to convert in the same manner, it is
more efficient to convert the value 1.0 once, and then apply the resulting
value as a scale factor in your own function or computation. This works for all
predefined units except temperature, where an offset is involved as well.

See also: “Real-world Units” on page 35.

(defun sym argument-list expr ...)

The defun function defines a function with the name sym (the function name
is automatically quoted and must not be explicitly quoted). Following the
function name is a list of arguments (possibly void), optionally followed by a
slash and the names of one or more local symbols for the function. The slash
must be separated from the first local symbol and from the last argument, if
any, by at least one space. If you don’t declare any arguments or local symbols,
you must supply an empty set of parentheses after the function name.

Examples

The following argument-1ist examples show valid and invalid values:

{defun myfunc (x vy)) Function takes two arguments
(defun myfunc (/ a b) L) Function has two local symbols
(defun myfunc (x / temp) ...) One argument, one local symbol
{) .)

defun myfunc No arguments or local symbols

You cannot define a function with multiple arguments of the same name, but
you can have one that defines a local variable with the same name as another
local variable or one of the arguments, as in:

(defun fubar (a a / b) ...) Is not legal
(defun fubar (a b / a ab) ...) Isfine

Catalogue of AutolISP Functions 101

AutoLISP Functions

Following the list of arguments and local symbols are one or more expressions
to be evaluated when the function is executed.

Note: If the argument/symbol list contains duplicate entries, the first occur-
rence of each name is used and the following occurrences are ignored.

The defun function returns the name of the function being defined. When
the function so defined is invoked, its arguments are evaluated and bound to
the argument symbols. The local symbols can be used within the function
without changing their bindings at outer levels. The function returns the
result of the last expression evaluated. All previous expressions in the function
have only side effects. The defun function returns the name of the function
defined.

The following examples define new functions with defun and show the values
returned by the new functions:

(defun addl0 (x)

(+ 10 x)
) returns ADD10O
(addl10 5) returns i5
(addl10 -7.4) returns 2.6

and

(defun dots (x yv / temp)

(setg temp (strcat x "..."))

(strcat temp y)
) returns DOTS
(dots "a" "b") returns "a...b"
(dots "from" "to") returns "from...to"

Warning: Never use the name of a built-in function or symbol as sym, since
this makes the built-in function inaccessible. To get a list of built-in and pre-
viously defined functions, see page 95 for information on the atoms-family
function.

Related topics: See “Defining Functions and Automatic Loading” on page 14
for information on function libraries. Also, see the setq function for examples
of local and global symbols.

(distance pt1 pt2) |

This function returns the 3D distance between the points pt1 and pt2. The
following examples demonstrate this:

(distance ' (1.0 2.5 3.0) " (7.7 2.5 3.0)) returns 6.7
(distance “ (1.0 2.0 0.5) "(3.0 4.0 0.5)) returns 2.82843

If one or both of the supplied points is a 2D point, then distance ignores the
Z coordinates of any 3D points supplied and returns the 2D distance between
the points as projected into the current construction plane.

See also: “Geometric Utilities” on page 25.

102 Catalogue of AutoLISP Functions

Chapter 4

(distof string [mode])

Converts string, which contains a real (floating-point) value in the display
format specified by mode, into a real value.

The mode argument specifies the units in which the string is formatted. The
value should correspond to values allowed for the AutoCAD system variable
LUNITS, as shown in the following table. Also, if mode is omitted, distof uses
the current value of LUNITS.

Table 4—4. Linear units values

Mode value String format

1 Scientific

2 Decimal

3 Engineering (feet and decimal inches)

4 Architectural (feet and fractional inches)
5 Fractional

The argument string must be a string that distof can parse correctly
according to the mode specified by mode. It can be in the same form that rtos
would return, or in a form that AutoCAD allows for keyboard entry. The
distof and rtos functions are complementary: if you pass distof a string
created by rtos, distof is guaranteed to return a valid value, and vice versa
(assuming the mode values are the same).

Note: The distof function treats modes 3 and 4 the same. That is, if mode
specifies 3 (engineering) or 4 (architectural) units, and string is in either of
these formats, distof returns the correct real value.

If distof succeeds, it returns a real number; otherwise, it returns nil.

(entdel ename)

The entity specified by ename is deleted if currently in the drawing, and unde-
leted (restored to the drawing) if it has been deleted previously in this editing
session. Deleted entities are purged from the drawing when leaving the draw-
ing editor, so entdel can only restore them during the editing session in
which they were deleted.

The entdel function operates only on main entities; attributes and Polyline
vertices cannot be deleted independently of their parent entities (you can use
the command function to operate the ATTEDIT or PEDIT commands to achieve
this).

You cannot delete entities within a Block Definition. However, you can com-
pletely redefine a Block Definition (minus the entity you want deleted) using
entmake to accomplish this.

Example
(setqg el (entnext)) Sets el to the name of the first entity in the drawing
(entdel el) Deletes entity el :
(entdel el) Undeletes (restores) deleted entity el

Catalogue of AutolISP Functions 103

AutolISP Functions

(entget ename [applist])

The entity whose name is ename is retrieved from the database and returned
as a list containing its definition data. If an optional list of registered applica-
tion names (applist) is supplied, the extended entity data associated with
the specified applications is also returned. The data is coded as a LISP associa-
tion list, from which you can extract items by using the assoc function.
Objects in the list are assigned AutoCAD DXF group codes for each part of the
entity data. ‘

These assumptions apply in the following example:
* the current layer is O

* the current linetype is CONTINUOUS (the default)
¢ the current elevation is zero (the default), and

* entity handles are disabled

If you draw a Line with the following sequence of commands:

Command: line
From point: 1,2
To point: 6,6
To point:
then you can retrieve the entity data for the Line by entering this:
Command: (setq a (entget (entlast)))which sets a equal to the list:

(1 . <Entity name: 60000014>)

(_

(0 "LINE") Entity type
(8 . "0") Layer
(10 1.0 2.0 0.0) Start point
(11 6.0 6.0 0.0) Endpoint

)

The -1 item at the start of the list contains the name of the entity this list rep-
resents. The entmod function described later uses it to identify the entity to be
modified.

The individual dotted pairs that represent the values can be easily extracted by
assoc, with cdr used to pull out their values. The codes for the components
of the entity are those used by DXF and documented in chapter 11 of the
AutoCAD Customization Manual.

As with DXF, entity header items (color, linetype, thickness, the attributes-
follow flag, and the entity handle) are output only if they have nondefault val-
ues. Unlike DXF, optional entity definition fields are output whether equal to
their defaults or not. This simplifies processing; programs can always assume
these fields to be present for general algorithms that operate on them. Also
unlike DXF, associated X, Y, and Z coordinates are grouped together into one
point list, as in (10 1.0 2.0 3.0), rather than appearing as separate 10, 20, and
30 groups.

The sublists for points are not dotted pairs like the rest. The convention is that
the cdr of the sublist is the group’s value. Since a point is a list of two (or three)
reals, that makes the entire group a three (or four) element list. The edr of the
group is the list representing the point, so the convention that cdr always
returns the value is preserved.

104 Catalogue of AutolISP Functions

(-1
(0

6
5

40

71

ll

{
(6
(
(1
(
(1
(5
(
(
(7
(
(7
(7
{
(21

Chapter 4

When writing functions to process these entity lists, be sure to make them
insensitive to the order of the sublists. Use assoc to guarantee this. The -1
group containing the entity’s name allows modification operations to accept
the entity list and avoids the need to keep the entity name in a parallel struc-
ture. A Segend entity at the end of a Polyline or a set of Attributes contains a
-2 group whose cdr is the entity name of the header of this entity. This allows
the header to be found from a subentity by walking forward to the Seqend,
and then using the cdr of the -2 group as the entity name to retrieve the asso-
ciated main entity.

The following example illustrates a more complex entity’s representation as a
list. For this example, we’ll assume the current UCS is rotated 40 degrees coun-
terclockwise about the X axis of the WCS and that entity handles are enabled.

Command: linetype
?/Create/Load/Set: set
New entity linetype <BYLAYER>: dashed
?/Create/Load/Set:
Command: color
New entity color <BYLAYER>: blue
Command: layer
?/Make/Set/New/On/Off/Color/Ltype/Freeze/Thaw: make
New current layer <0>: annotation
?/Make/Set/New/On/Off/Color/Ltype/Freeze/Thaw:
Command: text
Start point or Align/Center/Fit/Middle/Right/Style: 2,2
Height <0.2000>: .3
Rotation angle <0>: 30
Text: So long, and thanks for all the fish!
Command: (setq ed (entget (setq e (entlast))))

In this case, e is set to the Text entity’s name, and ed is set to the list that fol-

lows. Examining chapter 11 of the AutoCAD Customization Manual should clar-
ity the meaning of this list.

<Entity name: 6000053C>)
"TEXT") Entity type
" ANNOTATION") Layer
"DASHED") Linetype
. 5) Color
"TE") Handle
2.0 2.0 0. 0) Start point
0.3) Height
"So long, and thanks for all the fish!")
0.523599) Rotation angle (radians)
1.0) Width factor
0.0) Obliquing angle
" STANDARD") Text style
0) Generation flags
0) Horizontal justification
0) Vertical justification
0 0 0.0 0.0) Alignment point
0 0.0 -0.642788 0.766044) Extrusiondirectionvector

Catalogue of AutoLISP Functions 105

AutolISP Functions

(entlast)

All points associated with an entity are expressed in terms of that entity’s
Entity Coordinate System (ECS). For Point, Line, 3D Line, 3D Face, 3D
Polyline, 3D Mesh, and Dimension entities, the ECS is equivalent to the WCS
(the entity points are World points). For all other entities, the ECS can be
derived from the WCS and the entity’s extrusion direction (its 210 group).
When working with entities that have been drawn using coordinate systems
other than the WCS (such as the Text in the above example), you might need
to convert the points to the WCS or to the current UCS by using the trans
function. Using the above Text entity as an example:

(setg p (cdr (assoc 10 ed))) returns (2.0 2.0 0.0)

setting p to the text start point, in terms of the Text entity’s ECS. (Note that
the point is returned in this manner regardless of the current UCS setting at
the time of the entget.) Now:

(trans p e 0) returns (2.0 1.53209 1.28558)

This uses e (the Text entity name) as the from conversion code, and translates
the text start point from the Text’s ECS to World coordinates.

Before performing an (entget) or (entmod) on Vertex entities, you should
read or write the header (Polyline entity) for the Polyline to which they
belong. If the Polyline entity most recently processed is different from the one
to which the Vertex belongs, width information (the 40 and 41 groups) can be
lost.

This function returns the name of the last nondeleted main entity in the data-
base. This function is frequently used to obtain the name of a new entity
which has just been added via the command function. The entity need not be
on screen nor on a thawed layer to be selected.

For example:

(setq el (entlast)) Sets el to the name of the last main entity in the drawing
(setqg e2 (entnext el)) Sets e2 to nil (or to an Attribute or Vertex subentity name)

If your application requires the name of the last nondeleted entity (main
entity or subentity), define a function such as the following and call it instead
of entlast.

(defun lastent (/ a b)

(if

~—

(setqg a (entlast)) Gets last main entity
(while (setqg b (entnext a)) If subentities follow,
(setg a b) loops until no more
)
Returns last main/subentity

106

Catalogue of AutoLISP Functions

Chapter 4

(entmake [elist])

This function creates a new entity in the drawing. If the entity is successfully
created, its list of definition data is returned. If the entity cannot be created for
some reason (like incorrect supplied data), it returns nil.

The elist argument must be a list of the entity’s definition data in a format
similar to that returned by the entget function. The elist must contain all
of the information necessary to define the entity. If any required definition
data is omitted, entmake returns nil and the entity is rejected. If you omit
optional definition data (such as the layer), entmake uses the default value.

One method of creating a new entity is by obtaining an entity’s definition data
with the entget function, modifying it, and then appending a new entity to
the drawing with the entmake function.

Before creating a new entity, entmake verifies that a valid layer name, linetype
name, and colour are supplied. If a new layer name is introduced, entmake
automatically creates the new layer. The entmake function also checks for
Block names, Dimstyle names, Text style names, and Shape names if the entity
type requires them.

The entity type (e.g., Circle, Line) must be the first or second field of the
elist. Ifitis the second field, it can only be preceded by the entity name. This
is the format returned by entget. In such cases, it ignores the entity name
when the new entity is created. If the elist contains an entity handle, it also
is ignored.

This example creates a red circle on your drawing with its centre point at coor-
dinate (4,4) and a radius of 1. The optional layer and linetype fields have been
omitted and therefore assume default values.

(entmake “((0 "CIRCLE") Entity type
(62 . 1) Color
(10 4.0 4.0 0.0) Center point
(40 1.0) Radius

)
)

Note: Entities created on a frozen layer are not regenerated until the layer is
thawed.

Complex Entities

A complex entity (a Block Definition, a Polyline, or a Block Reference contain-
ing Attributes) can be created by several entmake calls to define its subentities
(Attributes or Vertices). When entmake sees that a complex entity is being cre-
ated, it creates a temporary file to gather the definition data. For each
entmake, a check is performed to see if the temporary file exists (meaning a
complex entity is being defined); if so, the new data is appended to the file.
When the definition of the complex entity is complete (by appending the
appropriate Seqend or Endblk entity), the supplied data is rechecked and the
complex entity is added to the drawing. Completion of a Block definition
(entmake of an Endblk) returns the Block’s name rather than the entity data
list normally returned.

If data is received during the creation of a complex entity that is invalid for
that entity type, the entity is rejected as well as the entire complex entity. A

Catalogue of AutoLISP Functions 107

AutolISP Functions

Block definition cannot be nested, nor can it reference itself. However, a Block
definition can contain references to other Block definitions.

A group 66 code is only honoured for Insert entities (meaning attributes fol-
low). For Polyline entities, the group 66 code is forced to a value of 1 (meaning
vertices follow) and for all other entities it takes a default of zero. The only
entity that can follow a Polyline entity is a Vertex entity.

No portion of a complex entity is displayed on your drawing until its defini-
tion is complete. You can cancel the creation of a complex entity by entering
entmake with no arguments. This clears the temporary file and returns nil.

All entities of a complex entity must have the same space setting. The entities
can exist in either model space or in paper space, but not both. For example,
Polyline, Vertex, and Seqend entities must be in the same space. The same is
true for Insert, Attrib, and Seqend entities.

The Block and Endblk entities can be used to create a new Block definition.
Newly created Blocks are automatically entered into the symbol table where
they can be referenced.

Applications might want to represent polygons with an arbitrarily large num-
ber of sides in Polyface meshes. However, the AutoCAD entity structure
imposes a limit on the number of vertices that a given face entity can specify.
You can represent more complex polygons by decomposing them into trian-
gular wedges. AutoCAD represents triangular wedges as 4-vertex Faces where
two adjacent vertices have the same value. Their edges should be made invis-
ible to prevent visible artifacts of this subdivision from being drawn. The
PFACE command performs this subdivision automatically, but when
applications generate polyface meshes directly, the applications must do this
themselves.

The number of vertices per face is the key parameter in this subdivision pro-
cess. The PFACEVMAX system variable provides an application with the num-
ber of vertices per face entity. This value is read-only and is set to 4.

Important: You cannot entmake Viewport entities.

Caution: When entmake creates a Block, it can overwrite an existing Block.
The entmake function does not check for name conflicts ip the Block Defini-
tions table, so before you use it to create a named Block, you should use
tblsearch (described on page 161) to ensure that the name of the new Block
is unique. However, using entmake to redefine anonymous blocks (described
in the next section) can be usetul.

Anonymous Blocks

The Block Definitions table in a drawing can contain anonymous Blocks.
Anonymous Blocks are created to support hatch patterns and associative
dimensioning. They can also be created by entmake for the application’s own
purposes, usually to contain entities that the user cannot access directly.

The name (group 2) of an anonymous Block is *Unnn, where nnn is a number
generated by AutoCAD. Also, the low-order bit of an anonymous block’s Block
type flag (group 70) is set to one. When entmake creates a block whose name
begins with * and whose anonymous bit is set, AutoCAD treats this as an anon-
ymous block and assigns it a name. Characters following the * in the name
string passed to entmake are ignored. After the Block is created, entmake

108 Catalogue of AutolISP Functions

Chapter 4

returns its name. If you are creating the block by multiple entmake calls, it
returns the name after a successful call of:

(entmake "endblk")

Whenever a drawing is brought into the drawing editor, all unreferenced
anonymous Blocks are purged from the Block Definitions table. Referenced
(Inserted) anonymous blocks are not purged. You can use entmake to create a
block reference (Insert) to an anonymous block (you cannot pass an anony-
mous block to the Insert command). You can also use entmake to redefine the
block. The entities in a block (but not the Block entity itself) can be modified
with entmod.

Caution: Although a referenced anonymous block becomes permanent, the
numeric portion of its name can change between drawing editor sessions.
Applications cannot rely on anonymous block names remaining constant.

(entmod elist)

The entmod function is passed a list (elist) in the format returned by
entget, and updates the database information for the entity whose name is
specified by the -1 group in elist. Therefore the primary mechanism
through which AutoLISP updates the database is by retrieving entities with
entget, modifying the list defining an entity (note that the AutoLISP subst
function is extremely useful for this), and updating the entity in the database
with entmod.

Example

(setg en (entnext))
(setqg ed (entget en))
(setg ed
(subst{cons 8 "0")
(assoc 8 ed)
ed
)
)
(entmod ed)

Sets en to the name of the first entity in the drawing
Sets ed to the entity data for entity name en

Changes the layer group in ed
to layer O

Modifies entity en’s layer in drawing

The entmod function imposes some restrictions on the changes it makes. First
of all, an entity’s type and handle cannot be changed. (If you want to do this,
just entdel it and make a new entity with the command or entmake func-
tions.) All objects referenced by the entity list must be known to AutoCAD
before the entmod is executed. Thus Text style, Linetype, Shape, and Block
names must have been previously defined in a drawing before they can be used
in an entity list with entmod. An exception to this is layer names—entmod
creates a new layer with the standard defaults used by the LAYER New
command if a previously undefined layer is named in an entity list.

For entity fields with floating-point values (such as thickness), entmod accepts
integer values and converts them to floating point. Similarly, if you supply a
floating-point value for an integer entity field (such as colour number), ent -
mod truncates it and converts it to an integer.

The entmod function performs the same consistency checking on the list sup-
plied to it as DXFIN does on the data from a DXEF file. If a serious error is
detected, the database is not updated and nil is returned. Otherwise, entmod

Catalogue of AutolLISP Functions 109

AutolLISP Functions

returns the list given to it as its argument. entmod cannot change internal
fields such as the entity name in the -2 group of a Seqend entity—attempts to
change such fields are ignored.

When entmod updates a main entity, it modifies the entity and updates its
image on screen (including subentities). When entmod updates a subentity (a
Polyline vertex or a Block attribute), the subentity is updated in the database
but the image on screen is not redisplayed. After all modifications are made to
a given entity’s subentities, the entupd function described later can be used to
update the image on screen. -

Important: You cannot use the entmod function to modify a Viewport entity.
You can change an entity’s space visibility field to 0 or 1 (except for Viewport
entities). If you entmod an entity within a Block Definition, the modification
will affect all instances of the Block in the drawing.

Before performing an (entget) or (entmod) on Vertex entities, you should
read or write the header (Polyline entity) for the Polyline to which they
belong. If the Polyline entity most recently processed is different from the one
to which the Vertex belongs, width information (the 40 and 41 groups) can be
lost.

Warning: You can use entmod to modify entities within a Block Definition,
thereby affecting all insertions of the block. By doing so it is possible to create
a self-referencing Block. Doing this can cause AutoCAD to crash.

(entnext [ename])

If called with no arguments, this function returns the entity name of the first
nondeleted entity in the database. If entnext is called with an entity name
argument ename, it returns the entity name of the first nondeleted entity fol-
lowing ename in the database. If there is no next entity in the database, it
returns nil.The entnext function returns both main entities and subentities.

The entities selected by ssget are main entities, not attributes of Blocks or ver-
tices of Polylines. You can access the internal structure of these complex enti-
ties by walking through the subentities with entnext. Once you obtain a sub-
entity’s name, you can operate on it like any other entity. If you have obtained
the name of a subentity via entnext, you can find the parent entity by walk-
ing forward via entnext until a Seqend entity is found, then extracting the -2
group from that entity, which is the main entity’s name. Examples follow:

(setqg el (entnext)) Sets e1 to the name of the first entity in the drawing
(setqg e2 (entnext el)) Sels e2 to the name of the entity following 1
(entsel [prompt])

Sometimes when operating on entities, you want to simultaneously select an
entity and specify the point by which it was selected. Examples of this in
AutoCAD can be found in Object Snap and in the BREAK, TRIM, and EXTEND
commands. The entsel function allows AutoLISP programs to perform this
operation. It selects a single entity, requiring the selection to be by a point
pick. The current Osnap setting is ignored by this function (no object snap)
unless you specifically request it while you are in the function. The entsel
function honours keywords from a preceding call to initget.

110 Catalogue of AutoLISP Functions

Chapter 4

The entsel function returns a list whose first element is the entity name of
the chosen entity, and whose second element is the coordinates (in terms of
the current UCS) of the point used to pick the entity. If a string is specified for
prompt, that string is used to ask the user for the entity. Otherwise, the
prompt defaults to Select object:. The following AutoCAD command sequence
illustrates the use of the entsel function and the list returned:

Command: line

From point: 1,1

To point: 6,6

To point:

Command: (setq e (entsel "Please choose an entity: "))
Please choose an entity: 3,3

(<Entity name: 60000014> (3.0 3.0 0.0))

A list of the form returned by entsel can be supplied to AutoCAD in response
to any of its object selection prompts. It is treated by AutoCAD as a pick of the
designated entity by pointing to the specified point.

Related topics: See initget on page 128.

(entupd ename)

(
(
(
{

)

When a Polyline vertex or Block attribute is modified with entmod, the entire
complex entity is not updated on screen. If, for example, 100 vertices of a com-
plex Polyline were to be modified, recalculating and redisplaying the Polyline
as each vertex was changed would be unacceptably slow. The entupd function
can be used to cause a modified Polyline or Block to be updated on screen. This
function can be called with the entity name of any part of the Polyline or
Block; it need not be the head entity—entupd will find the head. While
entupd is intended for Polylines and Blocks with attributes, it can be called for
any entity. It always regenerates the entity on the screen, including all suben-
tities.

Note: If entupd is used on a nested entity (an entity within a Block) or on a
Block that contains nested entities, all entities might not be regenerated. To
ensure complete regeneration, you must invoke the REGEN command. You can
do this from AutoLISP by entering (command "regen").

Example

Assuming that the first entity in the drawing is a Polyline with several vertices,
then

setg ed

setqg el (entnext)) Sets el to the Polyline’s entity name
setq e2 (entnext el)) Sets e2 to its first vertex
setqg ed (entget e2)) Sets ed to the vertex data
(subst (10 1.0 2.0)
(assoc 10 ed) Changes the vertex’s location in ed
ed to point (1,2)
(entmod ed) Moves the vertex in the drawing
(entupd el) Regenerates the Polyline entity el

Catalogue of AutoLISP Functions 111

AutolLISP Functions

(eq exprl expr2)

This function determines whether expri and expr2 are identical; that is,
whether they are actually bound to the same object (by setq, for example). eq
returns T if the two expressions are identical, and nil otherwise. It is typically
used to determine whether two lists are actually the same. For example, given
the following assignments:

(setg f1 "(a b c¢))
(setqg £2 "{(a b <))

(setqg £3 £2)

then
(eq £1 £3) returns nil £1 and £3 are not the same list!
(eg £3 £2) returns T £3 and £2 are exactly the same list

Related topics: Compare this function with the = function on page 88 and the
equal function described next.

(equal exprl expr2 [fuzz])

This function determines whether expri and expr2 are equal; that is,
whether they evaluate to the same thing. For example, given the following
assignments:

(setg f1 "(a b c))
(setg £2 "{(a b <))

(setqg £3 £2)

then
(equal f1 £3) returns T f1 and £3 evaluate to the same thing
(equal £3 f2) returns T £3 and £2 are exactly the same list

Although two lists that the equal function finds the same might not be found
so using the eq function, atoms that are found to be the same using the equal
function are always found to be the same if you use the eq function. If the eq
function finds the list or atoms the same, the equal function also always finds
them the same.

When comparing two real numbers (or two lists of real numbers, as in points),
you should realize that two identical numbers can differ slightly if different
methods are used to calculate them. Therefore, an optional numeric argu-
ment, fuzz, lets you specify the maximum amount by which expri and
expr2 can differ and still be considered equal.

For example, given

(setg a 1.123456)
(setg b 1.123457)

then
(equal a b) returns nil
(equal a b 0.000001) returns T

Related topics: Compare this function with the = function on page 88 and the
eq function described previously.

112 Catalogue of AutoLISP Functions

Chapter 4

(*error* string)

(eval expr)

(exit)

This is a user-definable error handling function. If it is not nil, it is executed
as a function whenever an AutoLISP error condition exists. It is passed one
argument, a string containing a description of the error.

Example

(defun *error* (msg)
(princ "error: ")
(princ msg)
(terpri)

)

This function would do exactly the same thing that the AutoLISP standard
error handler would do; print error: and the description.

Returns the result of evaluating expr, where expr is any AutoLISP expression.
For example, given these assignments:

(setg a 123)
(setg b ’a)

then
(eval 4.0) returns 4.0
(eval (abs -10)) returns 10
(eval a) returns 123
(eval b) returns 123

The exit function forces the current application to quit. If exit is called, it
returns the error message quit/exit abort and returns to the AutoCAD
Command: prompt.

See also: The quit function on page 146.

(exp number)

This function returns the constant e raised to the power of number (the natural
antilog). It returns a real. For example:

(exp 1.0) returns 2.71828
(exp 2.2) returns 9.02501
(exp -0.4) returns 0.67032

(expand number)

Allocates node space by requesting a specified number of segments. See “Man-
ual Allocation” on page 179 for more information on expand.

Catalogue of AutoLISP Functions 113

AutolISP Functions

(expt base power)

This function returns base raised to the specified power. If both arguments are
integers, the result is an integer. Otherwise the result is a real. These are exam-
ples:

(expt 2 4) returns 16
(expt 3.0 2.0) returns 9.0
(findfile filename)

The findfile function searches the AutoCAD library path for the file speci-
fied by filename and, if found, returns a fully qualified path/filename.

The AutoCAD library path is searched in the following order:
1. The current directory
2. The directory containing the current drawing file

3. The directories named by the ACAD environment variable (if this variable
has been specified)

4. The directory containing the AutoCAD program files

Note: Depending on the current environment, two or more of these directo-
ries might be the same.

The £indfile function makes no assumption about the file type or extension
of filename; if you want one, you must supply it. If the name is not qualified
(i-e., if it does not have a drive/directory prefix), AutoCAD searches for it and
returns the fully qualified name, or nil if the file is not found. If a drive/direc-
tory prefix is supplied, AutoCAD looks only in that directory (performing no
library search). The following examples use / as the directory separator; on
DOS systems, you can use either / or \.

For example, if the current directory is /acad and contains the file abc.Isp, we
are editing a drawing in the /acad/drawings directory, the ACAD environment
variable is set to /acad/support, the file xyz.txt exists only in the /acad/support
directory, and the file nosuch is not present in any of the directories on the
library search path; then

(findfile "abc.lsp") returns "/acad/abc.lsp"
(findfile "xyz.txt") returns "/acad/support/xyz.txt"
(findfile "nosuch") returns nil

The fully qualified name returned by £indfile is suitable for use with the
open function.

See also: “File Search” on page 24.

114 Catalogue of AutoLISP Functions

Chapter 4

(fix number) .

This function returns the conversion of number into an integer. The number
argument can be either an integer or a real. If real, it is truncated to the nearest
integer by discarding the fractional portion. For example:

(fix 3) returns 3
(fix 3.7) returns 3

Note: If number is larger than the largest possible integer (+2,147,483,647 or
-2,147,483,648 on a 32-bit platform) £ix returns a truncated real (although
integers transferred between AutoLISP and AutoCAD are restricted to 16-bit
values).

(float number)

This function returns the conversion of number into a real. The number argu-
ment can be either an integer or a real. For example:

(float 3) returns 3.0
(float 3.75) returns 3.75

(foreach name list expr ...)

This function steps through 1ist assigning each element to name, and evalu-
ates each expr for every element in the list. Any number of exprs can be spec-
ified. The foreach function returns the result of the last expr evaluated. For
example:

(foreach n ’'(a b ¢) (print n))

is equivalent to:

(print a)
(print b)
(print c) and returns c

except that foreach returns the result of only the last expression evaluated.

(8¢c)

Forces a garbage collection, which frees up unused nodes. See “Node Space” on
page 177 for greater explanation of garbage collection.

(gcd numl num?2)

This function returns the greatest common denominator of num! and num2.
The numl and num2 arguments must be integers. For example:

(gcd 81 57) returns 3
(gcd 12 20) returns 4

Catalogue of AutolLISP Functions 115

TR A AR SR e T T T L

AutolISP Functions

(getangle [pt] [prompt])

This function pauses for user input of an angle and then returns that angle in
radians. The getangle function measures angles with the zero-radian direc-
tion being the current angle set by the ANGBASE variable with angles increas-
ing in the counterclockwise direction. The returned angle is expressed in radi-
ans with respect to the current construction plane (the XY plane of the current
UCS, at the current elevation).

The prompt argument is an optional string to be displayed as a prompt, and
pt is an optional 2D base point in the current UCS. The user can specify an
angle by entering a number in the AutoCAD current angle units format.
Although the current angle units format might be in degrees, grads, or what-
ever, this function always returns the angle in radians.

The user can also show AutoLISP the angle by pointing to two 2D locations on
the graphics screen. AutoCAD draws a rubber-band line from the first point to
the current crosshair position to help you visualize the angle. The getangle
function’s optional pt argument, if specified, is assumed to be the first of these
two points, allowing the user to show AutoLISP the angle by pointing to one
other point. You can supply a 3D base point, but this can be confusing since
the angle is always measured in the current construction plane.

It is important to understand the difference between the input angle and the
angle returned by getangle. Angles input to getangle are based on the
current settings of ANGDIR and ANGBASE. However, once an angle is input, it
is measured in a counterclockwise direction (ignoring ANGDIR) with zero radi-
ans being the current setting of ANGBASE.

The following are example getangle calls:

(setg ang {(getangle))

(setqg ang (getangle “ (1.0 3.5)))

(setqg ang (getangle "Which way? "))

(setqg ang (getangle ’ (1.0 3.5) "Which way? "))

The user cannot enter another AutoLISP expression as the response to a
getangle request. An attempt to do so results in this message:
Can‘t reenter AutoLISP.

Related topics: See the illustration and comparison to getorient on page 121.
Also see initget on page 128.

(getcorner pt [prompt])

The getcorner function returns a point in the current UCS, similar to
getpoint. However, getcorner requires a base point argument pt and draws
a rectangle from that point as the user moves the crosshairs on screen. The
prompt argument is an optional string to be displayed as a prompt.

The base point is expressed in terms of the current UCS. If the user supplies a
3D base point, its Z coordinate is ignored; the current elevation is used as the
Z coordinate.

The user cannot enter another AutoLISP expression as the response to a
getcorner request.

Related topics: See getpoint on page 122 and initget on page 128.

116 Catalogue of AutoLISP Functions

Chapter 4

(getdist [pt] [prompt])

The getdist function pauses for user input of a distance or one or two points
and returns a real number that is the distance between those points.

The user can specify a distance by entering a number in the AutoCAD current
distance units format. Although the current distance units format might be in
feet and inches (architectural), this function always returns the distance as a
real.

Catalogue of AutolISP Functions 117

AutoLISP Functions

If the user picks two points, getdist returns the distance between them,
drawing a rubber-band line from the first point to the current crosshair posi-
tion to assist in visualizing the distance. The pt argument is an optional 2D or
3D base point in the current UCS. If provided, pt is used as the first of the two
points and the user is prompted for only the second point.

If a 3D point is provided, the returned value is a 3D distance. However, setting
the 64 bit of the initget function instructs getdist to ignore the Z compo-
nent of 3D points and return a 2D distance.

The prompt argument is an optional string to be displayed as a prompt.

The user cannot enter another AutoLISP expression as the response to a
getdist request.

The following are examples of how you can use the getdist function.

(setg dist (getdist))

(setg dist (getdist (1.0 3.5)))

(setg dist (getdist "How far "))

(setg dist (getdist " (1.0 3.5) "How far? "))

Related topics: See initget on page 128.

(getenv variable-name)

This function returns the string value assigned to a system environment vari-
able. The variable-name argument is a string specifying the name of the
variable to be read. If this variable does not exist, getenv returns nil.

For example, if the system environment variable ACAD is set to /acad/support
and there is no variable named NOSUCH, then:

(getenv "ACAD") returns */acad/support"
(getenv "NOSUCH") returns nil

Note: On UNIX systems, ACAD and acad refer to two different environment
variables, since these operating systems are case-sensitive.

(getfiled title default ext flags)

The getfiled function displays a dialogue box containing a list of available
files of a specified extension type. You can use this to browse through different
drives and directories, select an existing file, or specify the name of a new file.

This function prompts the user for a filename via the standard AutoCAD file
dialogue box. The title argument specifies the label of the entire dialogue
box, default specifies a default filename to use (which can be a null string
[*"]), and ext is the default filename extension (if passed as a null string [* "],
ext defaults to *). The following figure shows how these arguments affect the
dialogue box’s appearance. If the dialogue box obtains a filename from the
user, getfiled returns a string that specifies the filename; otherwise,
getfiled returnsnil.

118 Catalogue of AutoLISP Functions

Chapter 4

Example

The dialogue box shown next appears when the following call to get filed is
issued:

(getfiled "Select a Lisp File" "/acad/support/" "lsp" 8)

set by the title argument
set by the ext argument

set by the pathname portion of the
default argument—

if default doesn’t specify a path,
this s initially the current directory

disabled if bit value 2 is used in
flags argument

enabled if a default filename is supplied

set by the filename portion of the
default argument

Figure 4-1. Sample getfile dialogue box

The flags argument is an integer value (a bit-coded field) that controls the
behaviour of the dialogue box. To set more than one condition at a time, sim-
ply add the values together (in any combination) to create a flags value
between 0 and 15. The flags argument values and meanings are as follows:

Table 4-5. getfiled flags options

B el B e B O i & s
1 Indicates a request for a new file to be created
2 Disables the Type it button
4 Lets the user enter an arbitrary filename extension
8 Performs a library search for the filename entered

The following describes the £1ags values in more detail:

Value =1 (bit 0) This bit should be set when you are prompting for the
name of a new file to create. You should not set this bit
when you are prompting for the name of an existing
file to open. In the latter case, if the user enters the
name of a file that doesn’t exist, the dialogue box dis-
plays an error message at the bottom of the box.

If this bit is set and the user chooses a file that already
exists, AutoCAD displays an alert box and offers the
choice of proceeding with or cancelling the operation.
The following figure shows the alert box and message.

Catalogue of AutoLISP Functions 119

AutoLISP Functions

Value = 2 (bit 1) Disables the Type it button. This bit is automatically set
if get £iled is called while another dialogue box is ac-
tive (otherwise, it would force the other dialogue box
to disappear as well).

If this bit is not set, the Type it button is enabled. If the
user selects it, the dialogue box disappears and
getfiled returns a value of 1.

Value = 4 (bit 2) Lets the user enter an arbitrary filename extension, or
no extension at all.

If this bit is not set, getfiled accepts only the exten-
sion specified in the ext argument and appends this
extension to the filename if the user doesn’t enter it in
the File: edit box.

Value = 8 (bit 3) If this bit is set and bit 0 is not set, get filed performs
a library search for the filename entered. If it finds the
file and its directory in the library search path, it strips
the path and returns only the filename. (It doesn't strip
the pathname if it finds a file of the same name but it
is in a different directory.)

If this bit is not set, getfiled returns the entire
filename, including the pathname.

You should set this bit if you're using the dialogue box
to open an existing file whose name you want to save
in the drawing (or other database), and which you will
search for later by calling findfile.

(getint [prompt])

This function pauses for user input of an integer, and returns that integer. Val-
ues can range from -32,768 to +32,767. The prompt argument is an optional
string to be displayed as a prompt. For example:

(setg num (getint))

(setqg num (getint "Enter a number: "))

The user cannot enter another AutoLISP expression as the response to a
getint request.

See also: “The User-input (getxxx) Functions” on page 29 and initget on
page 128,

(getkword [prompt])

The getkword function requests a keyword from the user. The list of valid key-
words is set prior to the getkword call, using the initget function. The
prompt argument is an optional string to be displayed as a prompt.

The getkword function returns the keyword matching the user input as a
string. AutoCAD retries if the input is not a keyword. If the input is null (&),
getkword returns nil (if null input is allowed). This function also returns nil

if it wasn'’t preceded by a call to initget that established one or more key-
words.

120 Catalogue of AutoLISP Functions

Chapter 4

Example

The following example shows an initial call to initget, which sets up a list
of keywords (Yes and No) and disallows null input (bits value equal to 1) to
the following getkword call:

(initget 1 "Yes No")
(setg x (getkword "Are you sure? (Yes or No) "))

This would prompt the user for input and set the symbol x to either Yes or No,
depending on the user’s response. If the response does not match any of the
keywords, or if the user gives a null reply, AutoCAD asks the user to try again
by re-prompting with the string supplied in the prompt argument. If no
prompt argument is provided, AutoCAD supplies this prompt:

Try again:

The user cannot enter another AutoLISP expression as the response to a
getkword request.

See also: “The User-input (getxxx) Functions” on page 29 and initget on
page 128.

(getorient [pt] [prompt])

This function is similar to the getangle function, except that the angle value
returned by getorient is unaffected by the AutoCAD system variables
ANGBASE and ANGDIR. The getorient function always measures angles with
the zero-radian direction being to the right (east) and angles increasing in the
counterclockwise direction. As with getangle, getorient expresses the
returned angle in radians, with respect to the current construction plane.

The pt and prompt arguments are the same as in getangle.

You should understand the difference between the input angle and the angle
returned by getorient. Angles input to getorient are based on the current
settings of ANGDIR and ANGBASE. However, once an angle is input, it is mea-
sured in a counterclockwise direction, with zero radians being to the right
(ignoring ANGDIR and ANGBASE).

Therefore, some conversion must take place if you have selected a different
zero-degree base or a different direction for increasing angles by using the
UNITS command or the ANGBASE and ANGDIR system variables.

You should use getangle when you need a rotation amount (a relative angle),
whereas you should use getorient to obtain an orientation (an absolute
angle).

The user cannot enter another AutoLISP expression as the response to a
getorient request.

See also: “The User-input (getxxx) Functions” on page 29, getangle on
page 116, and initget on page 128.

Catalogue of AutoLISP Functions 121

AutoLISP Functions

(getpoint [pt] [prompt])

This function pauses for user input of a point. The pt argument is an optional
2D or 3D base point in the current UCS, and prompt is an optional string to
be displayed as a prompt. The user can specify a point by pointing or by enter-
ing a coordinate in the current units format. If the optional pt base point argu-
ment is present, AutoCAD draws a rubber-band line from that point to the cur-
rent crosshair position. For example:

(setg p (getpoint))
(setqg p (getpoint "Where? "))
(setg p (getpoint (1.5 2.0) "Second point: "))

The returned value is a 3D point expressed in terms of the current UCS.

The user cannot enter another AutoLISP expression as the response to a
getpoint request.

See also: “The User-input (getxxx) Functions” on page 29, getcorner on
page 116, and initget on page 128.

(getreal [prompt])

This function pauses for user input of a real number and returns that real num-
ber. The prompt argument is an optional string to be displayed as a prompt.
For example:

(setg val (getreal))
(setg val (getreal "Scale factor: "))

The user cannot enter another AutoLISP expression as the response to a
getreal request.

See also: “The User-input (getxxx) Functions” on page 29 and initget on
page 128.

(getstring [cr] [prompt])

The getstring function pauses for user input of a string, and returns that
string. If the string is longer than 132 characters, it returns only the first 132
characters of the string. If the input string contains the backslash character (\),
it is converted to two backslash characters (\\). This is done so the returned
value can contain filename paths that can be used by other functions.

If cris supplied and is not nil, the input string can contain blanks (and must
therefore be terminated by a [«]). Otherwise, the input string is terminated by
space or («). The prompt argument is an optional string to be displayed as a

prompt.
Examples
(setg s (getstring "What'’'s your first name? "))

responding John returns "John"

(setqg s (getstring T "What’'s your full name? "))

122 Catalogue of AutoLISP Functions

Chapter 4

responding John Doe returns "John Doe"

(setqg s (getstring "Enter filename: "))

responding \files\acad\mydwg returns "\\files\\acad\\mydwg"

Note: If your routine expects the user to enter one of several known options
(keywords), it can use the getkword function instead.

The user cannot enter another AutoLISP expression as the response to a
getstring request.

Related topics: See the description of the getkword function on page 120.

(getvar varname)

This function retrieves the value of an AutoCAD system variable. The variable
name must be enclosed in double quotes. For example, assuming that the fillet
radius specified most recently was 0.25 units:

(getvar "FILLETRAD") returns 025

If you use getvar to retrieve the value of a system variable unknown to
AutoCAD, it returns nil. You can find a list of the current AutoCAD system
variables in appendix A of the AutoCAD Reference Manual.

Related topics: See setvar on page 152.

See also: “System and Environment Variables” on page 23.

(graphscr)

On single-screen AutoCAD installations, the graphscr function causes the
display to switch from the text screen to the graphics screen. This is equivalent
to the AutoCAD command GRAPHSCR or to pressing the Flip Screen function
key (when the text screen is current).

The textsecr function is the complement of graphscr.
The graphscr function always returns nil.

Related topics: See textscr and textpage starting on page 162.

(grclear)

This function clears the current viewport. (On single-screen systems, it flips to
the graphics screen from the text screen first.) It leaves the command/prompt,
status, and menu areas unchanged. You can use the redraw function to restore

the prior contents of the graphics screen. The grclear function always
returns nil.

(_'atafogue of AutoLISP Functions 123

AutolISP Functions

(grdraw from to color [highlight])

The grdraw function draws a vector between two points, in the current view-
port. The from and to arguments are 2D or 3D points (lists of two or three
reals) that specify the endpoints of the vector in terms of the current UCS.
AutoCAD clips the vector as required to fit the screen. It draws the vector with
the colour specified by the integer color argument, with -1 signifying XOR
ink, which complements anything it draws over and erases itself when over-
drawn.

If the optional integer highlight argument is supplied and is nonzero, the
vector is drawn using the default highlighting method of the display device
(usually dashed). If highlight is omitted or is supplied and is zero, grdraw
uses the normal display mode.

You can use the grvecs function to draw multiple vectors on the graphics
screen (see page 127).

(grread [track] [allkeys [curtype]])

The grread function directly reads the next input provided by the user to any
of the AutoCAD input devices; it can optionally track the pointing device as it
is moved. This is how AutoCAD implements dragging.

Caution: Only very specialized AutoLISP routines need this function: most
input to AutoLISP should be obtained through the various get xxx functions
such as getstring, getreal, and so on.

If the track argument is supplied and is not ni 1, it enables the return of coor-
dinates from a pointing device as it is moved, and a selection button does not
have to be pressed. The allkeys argument is an optional integer value (a bit-
coded field). If the al]keys argument is present, grread will perform various
functions depending on the code supplied. The curtype argument can be
used to control the type of cursor displayed.

track Track cursor location if not nil.

allkeys If supplied, the allkeys argument must be an integer and is
defined as follows:

Value = 1 (bit 0) Return drag mode coordinates. If this bit is
set and the user moves the pointing device instead of selecting
a button or pressing a key, grread returns a list where the first
member is a type 5 and the second member is the (X,Y) coor-
dinates of the current pointing device (mouse or digitizer)
location. This is how AutoCAD implements dragging.

Value = 2 (bit 1) Return all key values, including function
and cursor key codes, and don’t move the cursor when the user
presses a cursor key.

Value = 4 (bit 2) Use the value passed in the curtype argu-
ment to control the cursor display. Options are shown below.

Value = 8 (bit 3) Don't display the error: console break mes-
sage when the user presses (Ctri)+(C).

curtype

Chapter 4

If supplied, the curtype argument defines the type of cursor
displayed. This must be an integer; options follow:

0 Display the normal crosshairs.

1 Don't display a cursor (no crosshairs).

2 Display the entity-selection “target” cursor.

Note: The curtype argument only affects the cursor type dur-
ing the current grread function call.

Note: Be aware that additional control bits might be defined in future
AutoCAD releases.

The grread function returns a list whose first element is a code specifying the
type of input. The second element of the list is either an integer or a point,
depending on the type of input. The return codes are as follows:

Table 4-6. Return values from grread

FPIST IO o A Sk U T s e ai] e
Value | Typeofinput | Value ‘Meaning
2 Keyboard input varies Character code
3 Selected point 3D point Point coordinates
4 Screen/Pull-down 0 to 999 Screen menu box no.
menu item 1001 to 1999 POP1 menu box no.
(from pointing 2001 to 2999 POP2 menu box no.
device) 3001 to 3999 POP3 menu box no.
... and so, to
16001 to 16999 POP16 menu box no.
5 Pointing device 3D point Drag mode coordinate
(returned only if
tracking is enabled)
6 BUTTONS menu item 0 to 999 BUTTONS1 menu button no.
1000 to 1999 BUTTONS2 menu button no.
2000 to 2999 BUTTONS3 menu button no.
3000 to 3999 BUTTONS4 menu button no.
7 TABLET1 menu item 0 to 32767 Digitized box no.
8 TABLET2 menu item 0 to 32767 Digitized box no.
9 TABLET3 menu item 0 to 32767 Digitized box no.
10 TABLET4 menu item 0 to 32767 Digitized box no.
¥ AUX menu item 0 to 999 AUX1 menu button no.
1000 to 1999 AUX2 menu button no.
2000 to 2999 AUX3 menu button no.
3000 to 3999 AUX4 menu button no.
12 Pointer button 3D point Point coordinates
(follows a type 6 or
type 11 return)

Entering (Ci)+(C) while a grread is in progress aborts the AutoLISP program
with a keyboard break (unless the allkeys argument has disallowed this).

Catalogue of AutoLISP Functions 125

AutolLISP Functions

Any other input is passed directly to grread, allowing the application com-
plete control over the input devices.

If the user presses the pointer button within a screen menu or pull-down menu
box, grread returns a type 11 code, butin a subsequent call, it does not return
a type 12 code: the type 12 code follows type 6 or type 11 only when the
pointer button is pressed while it is in the graphics area of the screen.

It is important to clear the code 12 data from the buffer before attempting
another operation with a pointer button or with an auxiliary function box. To
accomplish this, perform a nested grread like this:

(setq code_12 (grread (setqg code (grread))))

This sequence captures the value of the code 12 list as streaming input from
the device.

Note: Since input is handled differently on the various platforms supported by
AutoCAD, the function grread may return unexpected results. See your
AutoCAD Interface, Installation, and Performance Guide for more platform spe-
cific information.

¢ The default pointing device on platforms that use a system mouse return
a code 11, not a code 6.

* On the Macintosh platform, the pop menus will return a code 11, not a
code 4. Also on the MAC, a double click returns a code 11 (not a code 6),
and is followed by a code 5 coordinate pair if selected in the current view-
port. Conversely, a double click in a viewport other than the current one
returns a code 3 coordinate pair followed by a code 11.

(grtext [box text [highlight]])

The grtext function writes into the text portions of the AutoCAD graphics
screen. If called with a box number between 0 and the highest-numbered
screen menu box minus 1, it displays the string argument text in the specified
screen menu box.The text argument is truncated if it is too long to fit in the
menu box, and it is filled with blanks if shorter. If an invalid box number is
supplied, nil is returned.

If the optional integer argument highlight is supplied as a positive number,
grtext highlights the text in the designated box.When writing to menu
boxes, the text must first be written without the highlight argument, then
it must be highlighted. Highlighting a box automatically dehighlights any
other box already highlighted. If highlight is zero, the menu item is dehigh-
lighted. If highlight is a negative number, it is ignored.

This function displays just the supplied text in the menu area on screen; it
does not change the underlying screen menu item.

If grtext is called with a box number of -1, it writes the text into the mode
status line on screen. The length of the mode status line differs from display
to display (most allow at least 40 characters). grtext truncates the text to fit
in the available space.

If a box number of -2 is used, grtext writes the text into the coordinate status
line. If coordinate tracking is turned on, values written into this field are over-
written as soon as the pointer sends another set of coordinates. For either a -1
or -2 box number, the highlight argument is ignored if supplied.

Chapter 4

Finally, grtext can be called with no arguments to restore all on-screen text
areas to their standard values.

The SCREENBOXES system variable can be interrogated to determine the num-
ber of screen menu boxes present in a particular installation.

(grvecs vlist [trans])

Draws multiple vectors on the graphics screen. The v1ist argument is a list
comprised of a series of optional colour integers and two point lists. The for-
mat for viist is as follows:

([colorl] (froml) (tel) [color2] (from2) (to2) ...)

The optional colour value applies to all succeeding vectors until v1ist speci-
fies another colour. The colour is specified as an integer. AutoCAD colours are
in the range 0-255. If the colour value is greater than 255, succeeding vectors
are drawn in XOR ink, which complements anything it draws over and erases
itself when overdrawn. If the colour value is less than zero, the vector is high-
lighted.

Highlighting depends on the display device. Most display drivers indicate
highlighting by a dashed line, but some indicate it by using a distinctive
colour.

A pair of point lists specify the endpoints of the vectors, expressed in the cur-
rent UCS; these can be two-dimensional or three-dimensional points.

Important: You must pass these points as pairs—that is, in two successive point
lists—or the grvecs call will fail.

AutoCAD clips the vectors as required to fit on screen. If the call to grvecs is
successful, it returns nil.

Examples

The following draws five vertical lines on the graphics screen, each a different

colour:

(grvecs *'(1 (1 2)(1 5) Draws a red line from (1,2) to (1,5)

2 (2-2)042 5) Draws a yellow line from (2,2) to (2,5)
3 (3 2)(3 5) Draws a green line from (3,2) to (3,5)
4 (4 2)(4 5) Draws a cyan line from (4,2) to (4,5)
5 (5 2)(5 5)) Draws a blue line from (5,2) to (5,5)

)

The optional trans argument is a transformation matrix that lets you change
the location or proportion of the vectors defined in your vector list. This
matrix is a list of four lists of four real numbers. For example, the following
matrix represents a uniform scale of 1.0 and a translation of 5.0,5.0,0.0:

HOLEI 890 0B TSE)

(0.0°1.0 0.0-5.0)
(0.0 0.0 1.0 0.0)
(0.0 0.0 0.0 1.0)

)

If this matrix were applied to the above list of vectors, they would be offset by
5.0,5.0,0.0.

Catalogue of AutoLISP Functions 127

AutolLISP Functions

See also: The nentselp function on page 140 for more information on trans-

formation matrixes.

(handent handle)

An entity’s name can change from one editing session to the next, whereas an
entity’s handle remains constant throughout its life. Given an entity handle
string as the handle argument, the handent function returns the entity name
associated with that handle in the current editing session. Once the entity
name has been obtained, it can be used to manipulate the entity with any of

the entity-related functions.

Example

The following code,

(handent "5A2") might return <Entity name: 60004722>

in a particular editing session. Used with the same drawing but in another edit-
ing session, the same call might return a different entity name. The same
entity is referenced in each case; its handle remains the same, but its entity

name might change from session to session.

If handles are not being used in the drawing, or if handent is passed an invalid
handle or a handle not used by any entity in the current drawing, nil is
returned. The handent function will return entities that have been deleted
during the current editing session; you can then undelete them, if you want,

with the entdel function (see “(entdel ename)” on page 103).

(if testexpr thenexpr [elseexpr])

This function conditionally evaluates expressions. If testexpr is not nil,
then it evaluates t henexpr; otherwise it evaluates elseexpr. The last expres-
sion (elseexpr) is optional. The if function returns the value of the selected
expression; if e1seexpr is missing and testexprisnil, then the i £ function

returns nil.

Examples
(if =13'3) M¥ESEHLY "mo. ") returns *no."
e =0 4 122)) WEESY L) returns "YES!!®
E (=28 (£33 40 "YES!I™) returns nil

See also: The progn function on page 1435.

(initget [bits] [string])

This function establishes various options for use by the next entsel,
nentsel, nentselp, or getxxx function (except getstring, getenv, and

getvar). The initget function always returns nil.

Catalogue of AutoL-imS_ﬁFﬁﬁ.ct":’d;rs

Chapter 4

The optional bits argument is an integer (bit-coded) with values as follows:

Table 4-7. Input options set by initget

A L e bt o 5 AR
'I Disallow null input S .
2 Disallow zero values
4 Disallow negative values
8 Do not check drawing limits, even if LIMCHECK is On
16 (Not currently used)
32 Use dashed lines when drawing rubber-band line or box
64 Disallow input of a Z coordinate (getdist only)
128 Returns arbitrary keyboard input

Caution: Future versions of AutoLISP might use additional initget control
bits, so avoid setting bits that aren’t shown in the table or described in this sec-
tion.

The special control values are honoured only by those getxxx functions for
which they make sense, as shown in the following table:

Table 4-8. User-input functions and applicable control bits

s e el S o v QRO SO v 13 oo seccumzen
B 1 B B B e T B
ot s A kv sataians sy BUR g 28R, “‘Sﬁ“ L _ dashes | distance | Input
getint - ° . - .
getreal _
getdist o
getangle . . B . .
getorient s . . - .
getpoint = - . . .
getcaorner . . . [] .
getkword . . .
getstring
entsel .
nentsel *
nentselp .

The following list describes each control bit in more detail:

Value = 1 (bit 0) Prevents the user from responding to the request by
entering only («<).

Catalogue of AutolISP Functions 129

AutolISP Functions

Value = 2 (bit 1) Prevents the user from responding to the request by
entering zero.

Value = 4 (bit 2) Prevents the user from responding to the request by
entering a negative value.

Value = 8 (bit 3) Allows the user to enter a point outside the current
drawing limits. This condition applies to the next user-
input function even if the AutoCAD system variable
LIMCHECK is currently set.

Value = 16 (bit 4) Not currently used.

Value = 32 (bit 5) For those functions allowing the user to specify a point
by selecting a location on the graphics screen, causes
the rubber-band line or box displayed by the drawing
editor to be dashed instead of solid (some display driv-
ers use a distinctive colour instead of dashed lines). If
the system variable POPUPS is zero, AutoCAD ignores
this bit.

Value = 64 (bit 6) Prohibits input of a Z coordinate to the getdist func-
tion; lets an application ensure that this function re-
turns a 2D distance.

Value = 128 (bit 7) Allows arbitrary input as if it is a keyword, first honour-
ing any other control bits and listed keywords. This bit
takes precedence over bit 0; if bit 7 is set and the user
enters a null string will be returned.

If initget sets a control bit and the application then calls a user-input func-
tion for which the bit has no meaning, the bit is simply ignored. The bits can
be added together in any combination to form a value between 0 and 255. If
no bits argument is supplied, zero (no conditions) is assumed. If the user
input fails one or more of the specified conditions (as in a zero value when zero
values are not allowed), AutoCAD displays a message and asks the user to try
again.

Keyword Specifications

The optional stringargument defines a list of option keywords to be checked
by the next entsel, nentsel, nentselp, or getxxx request if the user does
not enter the expected type of input (for example, a point for getpoint). If
the user input matches a keyword from this list, the supplied function returns
that keyword as a string result. The user program can test for the keywords and
perform the desired action for each one. If the user input is not of the expected
type and does not match a keyword, AutoCAD asks the user to try again. A
legal keyword can contain letters, numbers, or hyphens (-).

The string argument is interpreted according to these rules:

* Each keyword is separated from the following keyword by one or more
spaces. For example, "width Height Depth" defines three keywords.

130 Catalogue of AutoLISP Functions

Chapter 4

e FEach keyword specification can instruct AutoCAD to recognize abbrevia-
tions. There are two methods of doing so:

* The required portion of the keyword is specified in uppercase charac-
ters, and the remainder of the keyword is specified in lowercase. The
uppercase abbreviation can be anywhere in the keyword (e.g.,
"LType", "eXit", or "toP").

e The entire keyword is specified in uppercase characters, and it is fol-
lowed immediately by a comma, followed by a repetition of the
required characters (e.g., "LTYPE,LT"). The keyword characters, in
this case, must include the first letter of the keyword, which means
that "EXIT, X" is not valid.

(This second method is provided to assist the development of applica-
tions for languages that do not use uppercase and lowercase in the
style of the Roman alphabet.)

Both of the brief examples, "LType" and "LTYPE, LT", are equivalent: if
the user types LT (in either uppercase or lowercase), this is sufficient to
identify the keyword.

The user can enter characters that follow the required portion of the key-
word, provided they don't conflict with the specification. In the example,
the user could also enter LTY or LTYP: but L would not be sufficient, and
something like LTSCALE or LTYPEX would not match the spelling of the
keyword.

¢ [If stringshows the keyword entirely in uppercase or lowercase characters
with no comma followed by a required part, AutoCAD only recognizes the
keyword if the user enters all of it.

Important: The control flags and keyword list established by initget are
applied only to the next entsel, nentsel, nentselp, or getxxx call and are
then automatically discarded. This avoids the need for another function call
to clear the special conditions.

See also: “Control of User-input Function Conditions” on page 31.

(inters pt1 pt2 pt3 pt4 [onseg])

The inters function examines two lines and returns the point where they
intersect, or nil if they do not intersect. The pt1 and pt2 arguments are the
endpoints of the first line, and pt3 and pt4 are the endpoints of the second
line.

All points are expressed in terms of the current UCS. If all four point argu-
ments are 3D, inters checks for 3D intersection; otherwise, inters projects

the lines onto the current construction plane and checks only for 2D intersec-
tion.

If the optional onseg argument is present and is ni1, the lines defined by the
four pt arguments are considered infinite in length, and inters returns the
point where they intersect even if that point is off the end of one or both of
the lines. If the onseg argument is omitted or is not nil, the intersection
point must lie on both lines or inters returns nil.

Catalogue of AutoLISP Functions 131

AutoLISP Functions

For example, given:

(setg a (1.0 1.0) b (9.0 9.0))
(setg ¢ (4.0 1.0) @ * (4.0 2.0))

then
(inters a b c d) returns nil
(inters a bc d T) returns nil
(inters a b ¢ d nil) returns (4.0 4.0)

(itoa int)

This function returns the conversion of an integer, int, into a string.

Examples
(itoa 33) returns "33
(itoa =17) returns m=17m

(lambda arguments expr ...)

The lambda function defines an anonymous function. This is typically used
when the overhead of defining a new function is not justified. It also makes
the programmer’s intention more apparent by laying out the function at the
spot where it is to be used. This function returns the value of its last expr, and
is often used in conjunction with apply and/or mapcar to perform a function
on a list. For example:

(apply '{lambda (x v z)
= ="
)
(5 20 14)
) returns 30

and

(setg counter 0)
(mapcar ‘ (lambda (x)
(setg counter (1+ counter))
(> st 5
)
(2 4-610.2)
) returns (10 20 -30 51.0)

(last list) [

|

This function returns the last element in 1ist. The 1ist argument must r\ot
be nil. For example: \

(last '{(a b c d e)) returns E
(last ‘(a b c (d e))) returns (D E)

As shown, last can return an atom or a list.

132 Catalogue of AutoLISP Functions

Chapter 4

Note: At first glance, 1ast might seem like a perfect way to obtain the Y coor-
dinate of a point. While this is true for 2D points (lists of two reals), last
would return the Z coordinate of a 3D point. To let your functions work prop-
erly given either 2D or 3D points, we suggest you use cadr to obtain Y coor-
dinates and caddr to obtain Z coordinates.

(length list)

This function returns an integer indicating the number of elements in 1ist.
For example:

(length "(a b ¢ d)) returns 4
(length "(a b (¢ d))) returns 3
(length *()) returns 0

(list expr ...)

This function takes any number of expressions (expr) and strings them
together, returning a list. For example:

(list. ‘a b "a) returns (A B C)
(list ’a ‘(b ¢) *d) returns (A (B C) D)
(list 3.9 6.7) returns 3.9 6.9

In AutoLISP, this function is frequently used to define a 2D or 3D point vari-
able (a list of two or three reals).

Note: As an alternative to using the 1ist function, you can explicitly quote a
list if there are no variables or undefined items in the list.

'{3.9.6.7) means the same as (iist 3.9 6.7)

This can be quite handy for creating association lists and defining points. See
quote on page 146.

(listp item)
This function returns T if i temis a list, and ni1 otherwise. For example:

(listp '(a-b e)) returns T

(listp fa) returns nil
(listp 4.343) returns nil ."
(listp nil) returns T nil is both an atom anf':i a list
|
(load filename [onfailure]) \

This function loads a file of AutoLISP expressions and evaluates those expres-
sions. The £ilename argument is a string that represents the filename without
an extension (an extension of .Isp is assumed). The filename can include a
directory prefix, as in “/function/test1”. On DOS systems, a drive letter is also
permitted, and you can use the backslash instead of the forward slash (but
remember that you must use \\ to obtain one backslash in a string).

Catalogue of AutolISP Functions 133

AutolLISP Functions

If you don’t include a directory prefix in the £ilename string, 1oad searches
the AutoCAD library path for the specified file, in a manner similar to that of
the £indfile function (the AutoCAD library path is described on page 114).
If the file is found anywhere on this path, 1oad then loads the file.

If the operation is successful, 1oad returns the value of the last expression in
the file, which is often the name of the last function defined in the file. If the
load operation fails, it normally causes an AutoLISP error. However, if the
onfailure argument is supplied, 1oad returns the value of this argument
upon failure instead of issuing an error message. This allows an AutoLISP
application calling load to take alternative action upon failure.

You should ensure that the onfailure argument is different from the last
expression in the file; otherwise, the meaning of the value returned by load is
ambiguous. Note that if the onfailure argument is a valid AutoLISP func-
tion, it is evaluated. Therefore, the onfailure argument should be a string or
an atom in most cases.

For example, assuming that file /fred/test1.Isp contains

(defun MY-FUNC1l (x)
. . . function body. . .

)

(defun MY-FUNC2 (x)
. . .function body . . .

)

and that file test2.Isp does not exist, then

(load "/fred/testl") returns MY-FUNC2
(load "\\fred\\testl") returns MY-FUNC2
(load "/fred/testl" "bad") returns MY-FUNC2
(load "test2" "bad") returns "bad"
(load "test2") causes an AutoLISP error

The load function can be used from within another AutoLISP function, or
even recursively (in the file being loaded).

Each time an AutoCAD drawing editg)f session begins, AutoLISP loads the file
acad.lsp if it exists. You can place fur/ction definitions in this file, and they are
automatically evaluated (defined) each time you begin editing a drawing. If
you want to have a series of AutoCAD commands or AutoLISP functions
executed automatically when beginning, saving, or exiting a drawing, place a
defun of the special s: : STARTUP function in the acad.lsp file; if this function
exists, AutoCAD executes the acad.lsp file automatically. Chapter 8 of the
AutoCAD Customization Manual discusses acad.lsp and the use of the load
function.

See also: The defun function on page 101 and “Defining Functions and Auto-
matic Loading” on page 14.

(log number)

This function returns the natural log of number as a real. For example:

(log 4.5) returns 1.50408
(log'1.22) returns 0.198851

134 Catalogue of AutoLISP Functions

Chapter 4

(logand number number ...)

This function returns the result of a logical bitwise AND of a list of numbers.
The numbers must be integers, and the result is also an integer. For example:

(logand 7 15 3) returns 3
(logand 2 3 15) returns 2
(logand 8 3 4) returns 0

(logior integer ...)

This function returns the result of a logical bitwise inclusive OR of a list of
numbers. The numbers must be integers, and the result is also an integer. For

example:
{logior 1 2 4) returns 7
(logior 9 3) returns 11

(Ish num1 numbits)

This function returns the logical bitwise shift of numl by numbits bits. The
numl and numbits arguments must be integers, and the result is also an inte-
ger.

If numbits is positive, num1 is shifted to the left; if negative, to the right. In
either case, zero bits are shifted in, and the bits shifted out are discarded. If a
one bit is shifted into or out of the top bit (16th on 16-bit machines, 32d on
32-bit workstations) of an integer, its sign changes.

For example:

{l=sh 2 1) returns 4
(lsh 2 -1) returns 1
{(lsh 40 2) returns 160

Note: The call (1sh 163 1) reﬂlms -32,768 on 16-bit machines, but it
returns 32,768 on 32-bit machines.

(mapcar function list1 ... listn)

The mapcar function returns a list as the result of executing function with
the individual elements of 1ist1 through Iistn supplied as arguments to
function. The number of Iists must match the number of arguments
required by function. For example:

{setg a 10 b 20 c 30)
(mapcar ‘1+ (list a b ¢)) returns (E45Y21 31)
is equivalent to

(1+ a)
(1+ b)
{1+ c)

Catalogue of AutoLISP Functions 135

AutolLISP Functions

except that mapcar returns a list of the results. Likewise

(mapcar “+ ‘(10 20 30) '(4 3 2)) returns (14 23 32)

This is similar to

(+ 10 4)
I+ Z20'3)
(+ 30 2)

The lambda function can specify an anonymous function to be performed by
mapcar. This is useful when some of the function arguments are constant or
are supplied by some other means. For instance:

(mapcar ' (lambda (x)
(+ x 3)
)
A0 20 38)
)

returns
(13 237339

and

(mapcar ‘(lambda (x y 2z)

(F 2 = Ty 2))

)

U5 e) (20 30) (14 5.0)
)

returns

(30 150.0)

(max number number ...)

(mem)

This function returns-the largest of the numbers given. Each number can be a
real or an integer. If all the numbers are integers, the result is an integer; if any
of the numbers are real numbers, the integers are promoted to real numbers
and the result is a real number.

For example:

(max 4.07 -144) returns 4.07
(max -88 19 5 2) returns 19

(max 2.1 4 B) returns 8.0

Displays the current state of AutoLISP’s memory. See “Memory Statistics” on
page 178 for more information on mem.

136 Catalogue of AutoLISP Functions

Chapter 4

(member expr list)

This function searches 1i st for an occurrence of expr and returns the remain-
der of 1ist starting with the first occurrence of expr. If there is no occurrence
of exprin 1ist, member returns nil. For example:

(member 'c''(a b c d e)) returns (C D E)
(member 'q “(a b c d e)) returns nil

(menucmd string)

The menucmd function lets AutoLISP programs switch between subpages in an
AutoCAD menu. Thus, an AutoLISP program can work in concert with an asso-
ciated menu file, displaying an appropriate submenu of alternatives whenever
user input is needed. The menucmd function always returns nil. The string
argument is of the form:

"section=submenu"

where section specifies the menu section and submenu specifies which sub-
menu to activate within that section. The allowed values of section are the
same as they are in menu file submenu references; these values are shown in
the following table:

Table 4-9. Section string values

Sectionstring | Menusection
S For the SCREEN menu

B1-B4 For BUTTONS menus 1 through 4

| For the ICON menu

PO-P16 For pull-down (POP) menus 0 through 16
2 For TABLET menus 1 through 4

A1-A4 For AUX menus 1 through 4

M For DIESEL string expressions

Note: For compatibility with previous AutoLISP versions, a "B" supplied as the
section string will be interpreted as a "B1".

See also: Chapter 6 of the AutoCAD Customization Manual and “Interactive
Output” on page 38 for more information and examples.

(min number number ...)

This function returns the smallest of the numbers given. Each number can be
a real or,an integer. If all the numbers are integers, the result is an integer; if
any of the numbers are real numbers, the integers are promoted to real num-
bers and the result is a real number. For example:

(min 683 -10.0) returns -10.0
(min 73 2 48 5) returns 2
(min 2 4 6.7) returns 2.0

Catalogue of AutoLISP Functions 137

AutoLISP Functions

(minusp item)

This function returns T if itemis a real or integer and evaluates to a negative
value; otherwise it returns nil. It is not defined for other types of item. For
example:

(minusp =1) returns T

(minusp -=4.293) returns T

(minusp 830.2) returns nil
(nentsel [prompt])

This function provides access to entity definition data contained within an
insert entity (inside a Block).

The nentsel function prompts the user to select an object. The current set-
ting of Osnap is ignored (no object snap) unless the user specifically requests
it . To provide additional support at the Command: prompt, nentsel can
optionally honour keywords defined by a previous call to initget.

The optional prompt argument, if provided, must be a string. If it is omitted,
the standard Select objects: prompt will be issued.

When the selected object is not a complex entity (a Polyline or Block),
nentsel returns the same information as entsel. However, if the selected
entity is a Polyline, nentsel returns a list containing the name of the suben-
tity (Vertex) and the pick point. This is similar to the list returned by entsel,
except that the name of the selected vertex is returned instead of the Polyline
header. The nentsel function always returns the starting vertex of the
selected Polyline segment. Picking the third segment of a Polyline, for exam-
ple, returns the third vertex. The Seqend subentity is never returned by
nentsel for a Polyline.

When the selected object is a component of a Block, nentsel returns a list
containing four elements as described next. The exception to this is Attributes
within a Block. Selecting an Attribute within a Block returns only the name of
the Attribute and the pick point (similar to the list returned by entsel).

The first element of the list returned from picking an entity within a Block is
the selected entity’s name. The second element is a list containing the coordi-
nates of the point used to pick the entity.

The third element is called the Model to World Transformation Matrix. It is a
list consisting of four sublists, each of which contains a set of coordinates. This
matrix can be used to transform the entity definition data points from an
internal coordinate system called the Model Coordinate System (MCS), to the
World Coordinate System (WCS). The insertion point of the Block that con-
tains the selected entity defines the origin of the MCS. The orientation of the
UCS when the Block is created determines the direction of the MCS axes.

The fourth element is a list containing the entity name of the Block that con-
tains the selected entity. If the selected entity is contained in a nested Block (a
Block within a Block), the list additionally contains the entity names of all
Blocks in which the selected entity is nested, starting with the innermost Block

138 Catalogue of AutoLISP Functions

Chapter 4

and continuing outward until the name of the Block that was inserted in the
drawing is reported.

(<Entity Name: enamel> Name of entity
(Px Py Pz) Pick point
(" (X0 YO Z0) Model to World
(X1'¥1'21) Transformation Matrix
X3 %21 LT
(X3 Y3 Z3)
)
(<Entity name: ename2> Name of most deeply nested Block

containing selected entity

<Entity name: enamens) Name of outermost Block
) containing selected entity

Once the entity name and the Model to World Transformation Matrix are
obtained, you can transform the entity definition data points from the MCS
to the WCS. Use entget and assoc on the entity name to obtain the desired
definition points expressed in MCS coordinates. The Model to World Transfor-
mation Matrix returned by nentsel has the same purpose as that returned by
nentselp, but it is a 4x3 matrix—passed as an array of four points—that uses
the convention that a point is a row rather than a column. The transformation
is described by the following matrix multiplication:

MOO MOI MOZ
M, M., M
[X' vz 1_0] . [X YZl.Cﬂ S0 M1 M2
MZO M21 MZZ
M30 M;, M32
So the equatjons for deriving the new coordinates are as follows:

S, - XMOO +]f’M10 + ZM20 +M,,
Y= XM, + YM11 +ZM,, +M31
Z = XM, + YM,, +ZM,, + M;,

The Mr’i where 0 <i, j< 2, are the Model to World Transformation Matrix coor-
dinates, X, Y, and Z is the entity definition data point expressed in MCS coor-
dinates, and X’, Y/, and Z’ is the resulting entity definition data point
expressed in WCS coordinates.

Note: This is the only AutoLISP function that uses a matrix of this type; the
nentselp function returns a matrix similar to those used by other AutoLISP
and ADS functions.

See also: “Entity Name Functions” on page 52, entsel on page 110, and
initget on page 128.

Catalogue of AutoLISP Functions 139

AutolISP Functions

(nentselp [prompt] [pt])

The nentselp function provides similar access to entity definition data con-
tained within a Block to that provided by the nentsel function. In addition
to the optional prompt argument this function also accepts a selection point
to be supplied as an optional argument: this allows entity selection without
user input. The nentselp function returns a 4x4 transformation matrix,

defined as follows:

Mgy My Mgy M
Mg My My My
Myy My, My, M3,
Myo M3y M3y My

Where the first three columns of the matrix specify scaling and rotation. The

fourth column of the matrix is a translation vector.

The functions that use a matrix of this type use the convention of treating a
point as a column vector of dimension 4. The point is expressed in homoge-
neous coordinates, where the fourth element of the point vector is a scale factor

that is normall
M,

set to 1.0. The final row of the matrix, the vector
M,, My,M,,, has the nominal value of [p ¢ ¢ 1]; it is currently ignored

by t’%e nctions that use this matrix format. In this convention, applying a
transformation to a point is a matrix multiplication that appears as follows:

-1

XW Moy My My, Moa? [x
V' _ (MygMyy My, My | Y
zZ| (M3 M3y My, Mg Z

1.0, Te.0 0.0 0.0 1.0/ 10
This multiplication gives us the individual coordinates of the point as follows:

X' = XMyy+ YMy, + ZMy, + M3 (1.0)
Y'=XM;,+YM +ZM, + M5 (1.0)
Z' = XM,y + YM,, + ZM,, + M,, (1.0)

As these equations show, the scale factor and the last row of the matrix have

no effect and are ignored.

See aiso: “Transformation Matrixes” in chapter 1 of the AutoCAD Development

System Programmer’s Reference for more information.

140

Catalogue of AutoLISP Functions

Chapter 4

(not item)

This function returns T if the expression itemisnil, and nil otherwise. Typ-
ically, the null function is used for lists, and not is used for other data types
in conjunction with some type of control function. For example, given the fol-
lowing assignments:

(setg a 123)
(setg b "string")
(setg c nil)

then
(not a) returns nil
(not b) returns nil
(not ¢) returns T
(not *()) returns T
(nth n list)

This function returns the nth element of 1ist, where n is the number of the
element to return (zero is the first element). If n is greater than 1ist’s highest
element number, it returns nil. For example:

(nth 3 "(a becde)) returns D
(nth 0 "(a b ec de)) returns A
mth's “{d bhid¢'d 'e)) returns nil

(null itemn)

This function returns T if i temis bound tonil, and nil otherwise. For exam-
ple, given the following assignments:

(setg a 123)
(setg b "string")
setg ¢ nil)

A

then "l
(null a) returns nil
(null b) returns nil
(rmall ¢) returns T
G ano e B i o returns i &

Catalogue of AutoLISP Functions 141

AutoLISP Functions

(numberp item)

This function returns T if i tem is a real or an integer, and nil otherwise. For
example, given the assignments:

(setg a 123)

(setg b ’a)
then

(numberp 4) returns T
(numberp 3.8348) returns T
(numberp "Howdy") returns nil
(numberp ‘&) returns nil
(numberp a) returns i
(numberp b) returns nil
(numberp (eval b)) returns T

(open filename mode)

This function opens a file for access by the AutoLISP I/O functions. It returns
a file descriptor to be used by the other I/O functions; therefore it must be
assigned to a symbol using the setq function. For example:

(setg a (open "file.ext" "r"))

The £11 ena}%;:gument is a string specifying the name and extension of the
file to be opened. The mode argument is the read/write flag. It must be a string
containing a siﬁgle lowercase letter. The following table describes the valid
mode letters:

Table 4-10. Mode options for the open function
Openmode | Description

r Open for reading. If £i1ename does not exist, it returns nil.

— T N e

"w" Open for writing. If £i1ename does not exist, a new file is created
and opened. If i lename already exists, its existing data is over-
written.

"a" Open for appending. If £ilename does not exist, a new file is cre-

ated and opened. If £ilename already exists, it is opened and the
pointer is positioned at the end of the existing data, so new data
you write to the file is appended to the existing data.

Caution: On DOS systems, some programs and text editors write
text files with an end-of-file marker (CTRL Z, decimal ASCIl code 26)
at the end of the text. When reading a text file, DOS returns an end-
of-file status if a CTRL Z marker is encountered, even if more data is
present after it. If you intend to use OPEN’s "a" mode to append
data to files produced by another program, ensure that the other
program does not insert CTRL Z markers at the end of its text files.

Assuming that the files named in the following examples do not exist:

(setg £ (open "new.tst" "w")) returns <File #nnn>
(setg £ (open "nosuch.fil" "r")) returns nil
(setg £ (open "logfile" "a")) returns <File #nnn>

142

Catalogue of AutolISP Functions

Chapter 4

The filename argument can include a directory prefix, as in /test/func3. On
DOS systems, a drive letter is also permitted, and you can use the backslash
instead of the forward slash (but remember that you must use \\ to obtain one
backslash in a string).

For example:

(setg £ (open, "/x/new.tst" "w")) returns <File #nnn>
(setg £ (open "nosuch.fil" "r")) returns nil

(or expr ...)

This function returns the logical OR of a list of expressions. The or function
evaluates the expressions from left to right, looking for a non-nil expression.
If one is found, or ceases further evaluation and returns T. If all of the expres-
sions are nil, or returns nil. For example:

(or nil 45 " ()) returns o
o b adl: o% b IR v A returns nil

(osnap pt mode-string)

This function returns a 3D point that is the result of applying the object snap
modes described by mode-string to point pt. The mode-string argument
is a string consisting of one or more valid object snap identifiers such as
midpoint, center, and so on, separated by commas. For instance:

(setqg pt2 (osnap ptl "cen"))

Operation of this function is dependent on the current 3D view. See the
AutoCAD Reference Manual for details.

See also: “Object Snap” on page 25.

This is not a function, but rather the constant n. It evaluates to approximately
3.1415926.

(polar pt angle distance)

This function returns the UCS 3D point at angle angle and distance
distance from UCS point pt. The angle argument is expressed in radians
from the X axis, with angles increasing in the counterclockwise direction.
Although pt can be a 3D point, angle is always with respect to the current
construction plane. For example:

(pelar "(1 1 3.5) 0.785398 1.414214) returns (2.0 2.0 F.5)

Catalogue of AutoLISP Functions 143

AutoLISP Functions

(prinl [expr [file-desc]])

This function prints the expression expr on screen and returns expr. The expr
argument can be any expression; it need not be a string. If file-desc is
present (and is a file descriptor for a file opened for writing), expr is written to
the file exactly as it would appear on screen. Only the specified expr is
printed; no newline or space is included. For example, given the assignment:

(setg a 123)
(setg b ' (a))

then
(prinl 'a) prints A and returns A
(prinl a) prints 123 and returns 123
(prinl b) prints (2) and returns (2)
(prinl "Hello") prints "Hello" and returns "Hello"

Each of the preceding examples prints on screen, since no file-desc was
specified. Assuming that f is a valid file-descriptor for a file opened for writing:

(prinl "Hello" f)

would write "Hello" to the specified file and return "Hello".

If expr is a string containing control characters, prinl expands these charac-
ters with a leading \, as follows:

Table 4-11. Control codes

Codfe | Meaning oe
A\ \ character
g " character
\e Escape character
\n Newline character
\r Return character
NE Tab character
\nnn Character whose octal code is nnn

Thus

(prinl (chr 2)) prints "\002" . andreturns ~ "\002"
(prinl (chr 10)) prints tAn® and returns "\n"

The prini function can be called with no arguments, in which case it returns
(and prints) the null string. If you use prin1 (with no arguments) as the last
expression in a user-defined function, only a blank line is printed when the

Chapter 4

function is complete, letting the user exit “quietly” from a function. For exam-
ple, given

(defun C:SETUP {()
(setvar "LUNITS" 4)
\ (setvar "BLIPMCODE" 0)
) (prinl)
/)

then
Command: setup

executes the user-defined command, performs the requested setvar func-
tions, and returns to the Command: prompt without printing any extraneous
messages.

See also: “Interactive Output” on page 38.

(princ [expr [file-desc]])

This function is the same as prin1, except that control characters in expr are
printed without expansion. In general, prinl is designed to print expressions
in a way that is compatible with 1oad, while princ prints them in a way that
is readable by functions such as read-1line.

See also: “Interactive Output” on page 38.

(print [expr [file-desc]])

This function is the same as prinl, except that it prints a newline character
before expr and prints a space following expr.

See also: “Interactive Output” on page 38.

(progn expr ...)

This function evaluates each expr sequentially and returns the value of the

last expression. You can use progn to evaluate several expressions where only
one expression is expected.

Example

(if (= a b)
(progn
{setg a (+ a 10))
(setg b (= b 10))

)
The if function normally evaluates one then expression if the test expression

evaluates to anything but nil. In this example, we have used progn to cause
two expressions to be evaluated instead.

Catalogue of ALtSL}S;’.Functfons 145

AutoLISP Functions

(prompt msg)

(quit)

This function displays msg on your screen’s prompt area and returns nil. The
msg argument is a string. On dual-screen AutoCAD configurations, prompt
displays msg on both screens and is therefore preferable to prine.

Example

(prompt "New value: " displays New value: on the screen(s)

and returns ni 1.

See also: “Interactive Output” on page 38.

The quit function forces the current application to quit. If quit is called, it
returns the error message quit/exit abort and returns to the AutoCAD
Command: prompt.

See also: The exit function on page 113,

(quote expr)

Returns expr unevaluated. This can also be written

'expr

For example:

(quote a) returns A
(quote cat) returns CAT
(quote (a b)) returns (A B)
‘a returns A
‘cat returns CAT
‘*(a b) returns (Al B)

The last three examples don’t work if entered directly from the keyboard in
response to an AutoCAD prompt. Remember that such input must begin with
a“ (" or“1” character to be recognized as a LISP expression.

(read string)

This function returns the first list or atom obtained from string. The string
argument cannot contain blanks except within a list or string. The read func-
tion returns its argument converted into the corresponding data type, as
shown in the following examples:

(read "hello") returns the atom HELLO
(read "hello there") returns the string HELLO
(read "\"Hi. ¥Y’all\"") returns the string "Hi Y¥all®
(read "(a b c)") returns the list (A B C)
(read "(a b e) (d)") returns the ljst (A B C)
(read "1.2300") returns the real number 1.23

(read "87") returns the integer 87

(read "87 3.2") returns the integer 87

Catalogue of AutoLISP Functions

Chapter 4

(read-char [file-desc])

This function reads a single character from the keyboard input buffer or from
the open file described by file-desc. It returns the (integer) decimal ASCII
code representing the character read (see appendix F for a list of ASCII codes).

If no £ile-desc is specified and there are no characters in the keyboard input
buffer, read-char waits for you to enter something at the keyboard (followed
by («=)). For instance, assuming the keyboard input buffer is empty,

(read-=char)

waits for something to be entered. If you enter ABC followed by [«],
read-char returns 65 (the decimal ASCII code for the letter A). The next three
calls to read-char return 66, 67, and 10 (newline), respectively. If another
read-char call is then made, it again waits for input.

The various operating systems under which AutoCAD and AutoLISP run use
several different conventions to signal the end of a line in an ASCII text file.
UNIX systems, for example, uses a single newline character (linefeed (LF),
ASCII code 10), whereas DOS systems use a pair of characters (carriage-return
(CR)/LF, ASCII codes 13 and 10) for the same purpose. To facilitate
development of AutoLISP programs that work in a portable fashion on all sup-
ported operating systems, read-char accepts all these conventions, returning
a single newline character (ASCII code 10) whenever it detects an end-of-line
character (or character sequence).

(read-line [file-desc])

This function reads a string from the keyboard or from the open file described
by file-desc. If read-1line encounters the end of the file, it returns nii;
otherwise, it returns the string that it read. For example, assuming f is a valid
open file pointer:

(read-line f)

returns the next input line from the file, or nil if the end-of-file has been
reached.

(redraw [ename [mode]])
The effect of the function depends on the number of arguments supplied. If
called with no arguments:

(redraw)

it redraws the current viewport, just like the AutoCAD REDRAW command. If
called with an entity name argument:

(redraw ename)
it redraws the specified entity. This is useful in identifying an entity on the

screen after using grclear to clear the screen. See “Entity Name Functions”
on page 52 for descriptions of entity names.

Catalogue of AutoLISP Functions 147

AutolISP Functions

Complete control over the redrawing of an entity is provided by calling
redraw with two arguments:

(redraw ename mode)

where ename is the entity name to be redrawn and mode is an integer with one
of the following values:

Table 4-12. Modes for redraw

 Redraw mode | Action
1 * Redraw entity
2 Undraw entity (blank it out)
3 Highlight entity
4 Unhighlight entity

If ename is the header of a complex entity (a Polyline or a Block with
attributes), it processes the main entity and all its subentities if the mode argu-
ment is positive. If the mode argument is negative, redraw operates on only
the header entity.

The redraw function always returns nil.

(regapp application)

This function registers an application name with the current AutoCAD draw-
ing. An application name is the principal mechanism for grouping, storing,
retrieving, and modifying application-defined extended entity data. An appli-
cation can use as many application names as desired to organize extended
entity data.

If an application of the same name has already been registered, this function
returns nil; otherwise it returns the name of the application.

If registered successfully, the application name is entered into the APPID sym-
bol table. This table maintains a list of the applications that are using extended
entity data in the drawing. This allows an application to distinguish its
extended entity data from that of other applications. Applications that append
or modify extended entity data can be either AutoLISP applications or
AutoCAD Development System (ADS) applications.

The application argument is a string up to 31 characters long that adheres to
the symbol naming conventions (such as table names). An application name
can contain letters, digits, and the special characters $ (dollar sign),
- (hyphen), and _ (underscore). It cannot contain spaces. Letters in the name
are converted to uppercase.

Examples

(regapp "ADESK_4153322344")
(regapp "DESIGNER-vZ2.1-124753")

Note: We recommend you pick an application name that is guaranteed to be
unique. One way of ensuring this is to adopt a naming scheme that uses the
company or product name and a unique number (like your telephone number
or the current date/time). The product version number could be included in

148 Catalogue of AutoLISP Functions

Chapter 4

the application name or stored by the application in a separate integer or real
number field; for example: (1040 2.1). Examples of such schemes are shown
above.

See also: The AutoCAD Reference Manual for information on extended entity
data and the AutoCAD Development System Programmer’s Reference for informa-
tion on ADS.

(rem numl num?2 ...)

This function divides numl by num2 and returns the remainder (numl mod
num2). The rem function can be used with reals or integers, with standard rules
of promotion. For example:

(rem 42 12) returns 6
(rem 12.0 16) returns 12.0
(rem 60 3) returns 0

(repeat number expr ...)

In this function, number represents any positive integer. The function evalu-
ates each expr number times and returns the value of the last expression. For
example, given the assignments:

(setg a 10)
(setg b 100)

then

(repeat 4
(setg a (+ a 10))
(seta b (+ b 100))
) sets a to 50, sets b to 500, and returns 500

(reverse list)

This function returns 1ist with its elements reversed. For example:

(reverse '((a) b c)) returns (C B (A))

(rtos number [mode [precision]])

This function returns a string that is the representation of number (a real)
according to the settings of mode, precision, the AutoCAD UNITMODE sys-
tem variable, and the DIMZIN dimensioning variable. The mode and

Catalogue of AutoLISP Functions 149

AutoLISP Functions

precision arguments are integers that select the linear units mode and pre-
cision, The supported mode values are listed next:

Table 4-13. Linear units values

“‘*mw‘” i “ﬁ?‘ﬁ?""ﬁms G b IR AT
1 Scientific
2 Decimal
3 Engineering (feet and decimal inches)
4 Architectural (feet and fractional inches)
5 Fractional

The mode and precisionarguments correspond to the AutoCAD system vari-
ables LUNITS and LUPREC. If you omit the arguments, rtos uses the current
settings of LUNITS and LUPREC.

The UNITMODE variable affects the returned string when engineering, archi-
tectural, or fractional units are selected (a mode value of 3, 4, or 5).

See also: The section titled “String Conversions” on page 33, which continues
the discussion of rtos.

(set sym expr)

This function sets the value of sym (where sym is a quoted symbol name) to
expr, and returns that value. For example:

(set ’'a 5.0) returns 5.0 andsets symbol 2
(set (quote b) ‘a) returns A and sets symbol B

If set is used with an unquoted symbol name, it can assign a new value to
another symbol indirectly. For instance, given the previous examples:

(set b 640) returns 640

and assigns the value 640 to symbol a (since that’s what symbol b contains).
Related topics: See setq, described in the following section.

(setq sym1 exprl [sym2 expr2] ...)

This function sets the value of sym1 to expri, sym2 to expr2, and so on. This
is the basic assignment function in AutoLISP. The setq function can assign

multiple symbols in one call to the function, but returns only the last expr.
For example:

(setg a 5.0) returns 5.0

and sets the symbol a to 5.0. Whenever a is evaluated, it evaluates the real
number 5.0. These are other examples:

(setg b 123 ¢ 4.7) returns 4.7
(setg s "it") returns s 5 gy
(setg x “(a b)) returns (A B)

150

Catalogue of AutoLISP Functions

Chapter 4

There is a maximum length of 132 characters for strings assigned to a symbol
directly by either setq or set. However, you can create longer strings by using
the streat function to join several strings together and then assign the result
to a symbol.

The setq function is the same as the set function except that the symbol
name is not quoted. In other words, set evaluates its first argument, but setq
does not. This example shows the similarity between these two functions.

{setg a 5.0) is equivalent to {set (guote a) 5.0)
The set and setq functions create or modify global symbols, unless used

within a defun to assign a value to a function argument or to a symbol
declared as local to that defun. For instance:

(setg glol 123) Creates a global symbol
(defun demo (argl arg?2 / locl loc2)
(setg argl 234) Assigns a new value locally
(setq.locl 345) Assigns a new value locally
(setg glol 4586) Assigns a new value globally
(setg glo2 567) Creates a new global symbol

)

Global symbols can be accessed or modified by any function or used in any
expression. Local symbols and function arguments are meaningful only dur-
ing evaluation of the function that defines them (and during functions called
by that function). Function arguments are treated as local symbols: the func-
tion can change their values, but the changes are discarded when the function
exits.

Warning: The set and setq functions can assign new values to the AutoLISP
built-in symbols and function names, thereby discarding the original assign-
ments or making them inaccessible. Several users have been unfortunate
enough to try such things as these:

(setqg angle (...)) Wrong!
(setg length (...9) Wrong!
(setg max (...)) Wrong!
(getg t [...)) Wrong!
(setg pi 3.0) Wrong!!!

To avoid strange errors, be careful when choosing names for your own sym-
bols. Never use a built-in symbol or function name for your own symbol. If you are
unsure of the originality of a symbol name, you can enter the following at the
prompt line (let’s assume you want to check for the symbol my sym):

Command: (atoms-family 0 ’("mysym"))
This would return
(nil)

if this symbol is not currently defined. See the atoms-family function
page 95 for more information on the use of this function.

Catalogue of AutolISP Functions 151

AutolISP Functions

(setvar varname value)

(sin angle)

This function sets an AutoCAD system variable varname to the given value,
and returns that value. You must enclose the variable name in double quotes.
For example:

(setvar "FILLETRAD" 0.50) returns 0.5

sets the AutoCAD fillet radius to 0.5 units. For system variables with integer
values, the supplied value must be between -32,768 and +32,767.

Some AutoCAD commands obtain the values of system variables before issu-
ing any prompts. If you use setvar to set a new value while a command is in
progress, the new value might not take effect until the next AutoCAD
command.

Note: When using the setvar function to change the AutoCAD system vari-
able ANGBASE, the value argument is interpreted as radians. This differs from
the AutoCAD SETVAR command, which interprets this argument as degrees.
When using the setvar function to change the AutoCAD system variable
SNAPANG, the value argument is interpreted as radians relative to the
AutoCAD default direction for angle 0, which is east or 3 o’clock. This also dif-
fers from the SETVAR command, which interprets this argument as degrees rel-
ative to the ANGBASE setting.

Caution: The UNDO command does not undo changes made to the CVPORT
system variable by the setvar function.

You can find a list of the current AutoCAD system variables in appendix A of
the AutoCAD Reference Manual.

Related topics: See getvar on page 123.

This function returns the sine of angle as a real, where angle is expressed in
radians. For example:

(sin 1.0) returns 0.841471
(sin 0.0) returns 0.0
(sqrt number)
This function returns the square root of number as a real. For example:
(sgrt 4) returns 2.0
(sart 2.0) returns 1.41421
(ssadd [ename [ss]])

If called with no arguments, ssadd constructs a new selection set with no
members. If called with a single entity name argument ename, ssadd con-
structs a new selection set containing that single entity. If called with an entity
name and a selection set ss, ssadd adds the named entity to the selection set.
The ssadd function always returns the new or modified selection set. When

152 Catalogue of AutolISP Functions

Chapter 4

adding an entity to a set, the new entity is added to the existing set and the
set passed as ss is returned as the result. Thus, if the set is assigned to other
variables, they also reflect the addition. If the named entity is already in the
set, the ssadd operation is ignored; no error is reported. These are examples:

(setqg el (entnext)) Sets el to name of first entity in drawing

(setg ss (ssadd)) Sets ss to a null selection set

(ssadd el ss) Returns selection set ss with entity name el added
(setqg e2 (entnext el)) Gets entity following el

(ssadd e2 ss) Returns selection set ss with entity name e2 added

(ssdel ename ss)

The ssdel function deletes the entity ename from selection set ss and returns
the name of selection set ss. Note that the entity is actually deleted from the
selection set as opposed to a new set being returned with the element deleted.
If the entity is not in the set, ni1 is returned.

For example, given that entity name e1 is a member of selection set ss1 and
entity name e2 is not, then

(ssdel el 'ssl) Returns selection set ss with entity 1 removed
(ssdel e2 ssl) Returns nil (does not change ss)

(ssget [mode] [pt1 [pt2]] [pt-list] [filter-list])

(ssget)

(ssget "P")
(ssget "L")
(ssget "1I")

The ssget function returns a selection set. The optional mode argument is a
string specifying the entity selection method, which can be "w", "wp", "c",
"cp", "L", "B", "I", or "F", corresponding to the AutoCAD Window, WPoly-
gon Crossing, CPolygon, Last, Previous, Implied, and Fence selection modes.
Another optional mode value is "x ", which selects the entire database. The pt 1
and pt2 arguments specify points relevant to the selection. Supplying a point
with no mode argument is equivalent to entity selection by picking a single
point. The current setting of the Osnap command is ignored by this function
(no object snap) unless you specifically request it while you are in the func-
tion. The filter-1ist argument may be used with any of the modes and
allows finer control over the entity selection process.

If all arguments are omitted, ssget prompts the user through the AutoCAD
general Select objects: mechanism, allowing interactive construction of the
selection set.

Selection sets can contain entities from both paper and model space, but when
the selection set is used in an operation, entities from the space not currently
in effect are filtered out. This is also true for all AutoCAD commands.

Selection sets returned by ssget contain main entities only (no Attributes or
Polyline vertices). These are examples of ssget:

Asks the user for a general entity selection and

places those entities in a selection set (sel. set)

Creates a sel. set of the most recently selected objects
Creates a sel. set of the last visible entity added to the
database

Creates a sel. set of the entities in the Implied selection
set (those selected while PICKFIRST is in effect)

Catalogue of AutolISP Functions 153

AutolLISP Functions

{ssget
(ssget

(ssget

(ssget
(ssget

(ssget

(ssget

w2320) Creates a sel. set of the entity passing through (2,2)

Rt (000) (5 5)) Creates a sel. set of the entities inside the window from
(0,0) to (5,5)

ol JNES AT 0T IR R Creates a sel. set of the entities crossing the box from
0,0) to (1,1)

"X") Creates a sel. set of all entities in the database

"X" filter-list) Scans the database and creates a sel. set of entities
matching the filter-list

filter-list) Asks the user for a general entity selection and places
only those entities matching the filter-list in a sel. set

"P" filter-list) Creates a sel. set of the most recently selected entities

that match the filter-list

The following examples of ssget require that a list of points be passed to the
function.

(setqg prllisgt. ./ 0L 1) 4331} (5:2){2-4)))

(ssget

(ssget

(ssget

(ssget

"WP" pt_list) Creates a sel. set of all entities inside the polygon
defined by pt_list
"CP" pt_list) Creates a sel. set of all entities crossing and inside the
polygon defined by pt_list
"E" pt_list) Creates a sel. set of all entities intersecting the fence
defined by pt_list
"Wp" pt_list filter-list) Creates a sel. set of all entities inside the polygon

defined by pt_1ist that match the filter-list

The selected objects are highlighted only when ssget is used with no argu-
ments. No information about how the entity was picked is retained (see
entsel for an alternative). Selection sets consume AutoCAD temporary file
slots, so AutoLISP is not permitted to have more than 128 open at once. If this
limit is reached, AutoCAD refuses to create any more selection sets and returns
nil to all ssget calls. To close an unneeded selection set variable, setit tonil.

A selection set variable can be passed to AutoCAD in response to any Select
objects: prompt at which selection by Last is valid. It selects all the objects in
the selection set variable.

Selection Set Fil;ers

Selection set filter lists can be used with any of the selection modes. A
filter-1ist is an association list, similar to the type of list returned by the
entget function. The filter-I1ist specifies which property (or properties)
of the entities are to be checked, and what values constitute a match.

Using this mechanism, you can obtain a selection set including all entities of
a given type, on a given layer, or of a given colour. The following example
returns a selection set consisting only of blue lines that are part of the Implied
selection set (those entities selected while PICKFIRST is in effect):

(ssgel "I" 7 ({0 . "LINE"™)Y (62 . 5)))

Using the ssget filter list, you can select all entities containing extended

entity data (Xdata) for a particular application. This is done using the -3 group
code, as in

(ssget "P" ' ((0 . "CIRCLE") (-3 ("APPNAME"))))

This selects all circles containing Xdata for the "APPNAME" application.

154

Catalogue of AutolISP Functions

Chapter 4

See also: “Selection Set Filter Lists” on page 47 and “Filtering for Extended
Entity Data” on page 49.

Relational Tests

Unless otherwise specified, an “equals” test is implied for each item in the
filter-1list. For numeric groups (integers, reals, points, and vectors) you
can specify other relations by including a special -4 group code that specifies
a relational operator. The value of a —4 group is a string indicating the test
operator to be applied to the next group in the filter list. For example:

(ssget "X" *((0 . "CIRCLE") (-4, . ">=") (40 . 2.0)))

selects all circles whose radius (group code 40) is greater than or equal to 2.0.

The following table shows the possible operators:

Table 4-14. Relational operators for selection set filter lists

Operator | Meaning
o Anything goes (always true)

. Equals

Wy

= Not equals

"o

A Less than

Wy Less than or equal

uso Greater than

N Greater than or equal

" Bitwise AND (integer groups only)
nE=" Bitwise masked equals (integer groups only)

The use of relational operators depends on the kind of group you are testing:

All relational operators except for the bitwise operators (*&" and "&=") are
valid for both real- and integer-valued groups.

The bitwise operators "&" and "&=" are valid only for integer-valued
groups. The bitwise AND, "&", is true if ((integer group & filter)
/= 0)—that is, if any of the bits set in the mask are also set in the integer
group. The bitwise masked equals, "&=", is true if ({ integer_group &
filter) = filter)—thatis, if all bits set in the mask are also set in the

Integer_group (other bits might be set in the integer group but are
not checked).

For point groups, the X, Y, and Z tests can be combined into a single string,
with each operator separated by commas (e.g., ">, >, *"). If an operator is
omitted from the string (for example, "=, <>" leaves out the Z test), the
“anything goes” operator, " * ", is assumed.

Direction vectors (group type 210) can be compared only with the opera-
tors "**, *=v, and " =" (or one of the equivalent “not equals” strings).

Cata!bgue of AutoLISP Functions 155

AutolISP Functions

¢ You can’t use the relational operators with string groups; use wild card
tests instead.

Logical Grouping of Filter Tests

The relational operators described in the previous subsection are binary oper-
ators. You can also test groups by creating nested Boolean expressions that use
the grouping operators shown in the following table. The grouping operators
are specified by —4 groups, like the relational operators. They are paired, and
must be balanced correctly in the filter list or the ssget call fails. The number
of operands these operators can enclose depends on the operation, as shown
in the table.

Table 4-15. Grouping operators for selection set filter lists

Smng Endo TR o = - ﬂndfng

Operator |\ iee s ool 0pesalers.
"<AND" One or more operands "AND>"
"<OR" One or more operands "OR>"
"<XOR" Two operands "XOR>"
"<NOT" One operand "NOT>"

With the grouping operators, an operand is a entity-field group, a relational
operator followed by an entity-field group, or a nested expression created by
these operators.

An example of grouping operators in a filter list follows:

(ssget "X" " ((-4 . "<OR")
(-4 . "<AND")
(0 . "CIRCLE™")
(A0 v Tl
(=4 . MAND>")
(-4 . "<AND")
(0", "LINE")
(8 . "ABC")
(-4 . "AND>")
(=4 . TORz"))
)

This selects all circles with radius 1.0, plus all lines on layer "2aBC".

The grouping operators aren’t case-sensitive: you can also use their lowercase
equivalents: "<and", "ands", "<or", "or>", "<xor", "xors", "<not", and
"noLsr,

(sslength ss)

This function returns an integer containing the number of entities in selection
set ss. The number is returned as a real if it is greater than 32,767. Selection
sets never contain duplicate selections of the same entity. For example:

(setqg sset (ssget "L")) Places the last object in selection set sset
(sslength sset) returns 1

Chapter 4

(ssmemb ename ss)

This function tests whether entity name ename is a member of selection set ss.
If it is, ssmemb returns the entity name (ename). If not, it returns nil. For
example, given that entity name e1 is a member of selection set ss1 and entity
name 2 is not, then

(ssmemb el ssl)
(ssmemb e2 ssl)

Returns entity name el
Returns nil

(ssname ss index)

(setg
(setg
(setqg

(setqg

This function returns the entity name of the indexth element of selection set
ss. If index is negative or greater than the highest numbered entity in the
selection set, nil is returned. The first element in the set has an index of zero.
Entity names in selection sets obtained with ssget will always be names of
main entities. Subentities (Block attributes and Polyline vertices) are not
returned (but see entnext, later, which allows access to them).

For example:

sset (ssget))
entl (ssname sset 0))
entd (ssname sset 3))

Creates a selection set named sset
Gets name of first entity in sset
Gets name of fourth entity in sset

To access entities beyond the 32767th one in a selection set, you must supply
the indexargument as a real. For example:

entx (ssname sset 50843.0)) Gets name of 50844th entity in sset

(strcase string [which])

The strcase function takes the string specified by the st ring argument and
returns a copy with all alphabetic characters converted to upper- or lowercase,
depending on the second argument, which. If which is omitted or evaluates
to nil, all alphabetic characters in string are converted to uppercase. If
which is supplied and is not ni 1, all alphabetic characters in string are con-
verted to lowercase. For example:

(strcase "Sample")
(strcase "Sample" T)

returns
returns

"SAMPLE"
n Salnple n

The strcase function will correctly handle case mapping of the currently
configured character set (see “Foreign Language Support” on page 184).

(strcat stringl [string2] ...)

This function returns a string that is the concatenation of stringi, string2,
and so on. For example:

(strcat "a"™ "bout") returns "about"
(stroat "a% *b"i rgr) returns "abc"
(BifFaat g wi many returns ac

Catalogue of AutoLISP Functions 157

AutolLISP Functions

(strlen [string] ...)

This function returns an integer that is the number of characters, in string.
If multiple string arguments are provided, it returns the sum of the lengths
of all arguments. Omitting the arguments or entering an empty string (as
shown in the last two examples) returns the integer 0 (zero).

(strlen "abcd") returns 4
(strlen "ab") returns 2
(strlen "one" "two" “"three") returns 11
(strlen) returns 0
(strlen "") returns 0

(subst newitem olditem list)

This function searches 1ist for olditem, and returns a copy of I1ist with
newitem substituted in place of every occurrence of olditem. If olditemis
not found in 1ist, subst returns 1ist unchanged. For example, given

(setq sample '(a b (c d) b))

then
(subst ‘qq ‘b sample) returns (A QQ (C D) QQ)
(subst ‘qgg 'z sample) returns (A B (C D) B)
(subst ’'qgg ' (¢ d) sample) returns (A B QQ B)
(subst ' (gg rr) *(c 4d) sample) returns (A'B (QQ RR) B)
(subst ’'(qg rr) 'z sample) returns (& B (C D) B)

When used in conjunction with assoc, subst provides a convenient means
of replacing the value associated with one key in an association list. For
instance, given

(setg who '{(first john) (mid g) (last public)))

then
(setg old

(assoc ’'first who)
) returns (FIRST JOHN)
(setg new " (first j)) returns (FIRST J)
(subst new old who) returns ({(FIRST J) (MID Q) (LAST PUBLIC))
(substr string start [length])

This function returns a substring of string, starting at the start character
position of string and continuing for length characters. If length is not
specified, the substring continues to the end of st ring. The stringargument
(and length, if present) must be a positive integer.

You should note that the first character of string is character number 1. This
differs from all other functions that deal with elements of a list (like nth,
ssname, and so on) which count the first element as 0.

158 Catalogue of AutolISP Functions

Chapter 4

Example
(substr "abcde" 2) returns "bede"
(substr "abcde" 2 1) returns ann
(substr "abcde" 3 2) returns Tean

(tablet code [row1 row2 row3 direction])

This function is used to retrieve and establish digitizer calibrations. It can be
used simply for saving and restoring calibrations, or for creating new tablet
transformations.

Depending on the integer specified by code, tablet either retrieves the cur-
rent digitizer (tablet) calibration or sets the calibration. If code is 0, tablet
returns the current calibration. If code s 1, it must be followed by the new cal-
ibration settings: rowl, row2, row3, and direction.

code An integer.

If the code you pass equals 0, tablet returns the cur-
rent calibration; in this case, the remaining arguments
must be omitted. If the code you pass equals 1,
tablet sets the calibration according to the argu-
ments that follow; in this case, you must provide the
other arguments.

rowl, row2, row3 Three 3D points. These three arguments specify the
three rows of the tablet’s transformation matrix.

direction A 3D point. This is the vector (expressed in the World
Coordinate System, WCS) that is normal to the plane
that represents the surface of the tablet.

Note: If the direction specified isn’t normalized, tablet corrects it, so the
direction it returns when you set the calibration may differ from the value
you passed. In a similar way, the third element in row3 (Z) should always equal
1: tablet returns it as 1 even if the row3 in the list specified a different value.

If tablet fails, the function returns nil and sets the system variable ERRNO
to a value that indicates the reason for the failure (see appendix C). This can
happen if the digitizer is not a tablet.

A very simple transformation that can be established with tablet is the iden-
tity transformation:

(cablet 1 “(1 0 0) *(0 1 D) *(0 O 1) “(0 O 1))

With this transformation in effect, AutoCAD will receive, effectively, raw dig-
itizer coordinates from the tablet. For example, if you pick the point with dig-
itizer coordinates (5000,15000), it will be seen by AutoCAD as the point in
your drawing with those same coordinates.

Note: The system variable TABMODE allows an AutoLISP routine to toggle the
tablet On and Off,

See also: “Tablet Calibration” on page 41 for additional information on the
tablet transformation matrix.

Catalogue of AutoLISP Functions 159

AutolISP Functions

(tblnext table-name [rewind])

This function is used when scanning an entire symbol table. The first argu-
ment is a string identifying the symbol table of interest. Valid table-name
names are "LAYER", "LTYPE", "VIEW", "STYLE", "BLOCK", "UCS", "APPID",
"DIMSTYLE", and "VPORT". The string need not be uppercase.

When tblnext is used repeatedly, it normally returns the next entry in the
specified table each time. (The tblsearch function, described next, can set
the next entry to be retrieved.) However, if the rewindargument is present and
evaluates to a non-nil value, the symbol table is rewound and the first entry
in it is retrieved. If there are no more entries in the table, nil is returned.
Deleted table entries are never returned.

If an entry is found, it is returned as a list of dotted pairs of DXF-type codes
and values, similar to those returned by entget. For instance:

(tblnext "layer" T) Retrieves first layer
might return
({0 . "LAYER") Symbol type
(2] 7w Q) Symbol name
(70 . 0) Flags
(62 . 7) Color number, negative if off
(6 . "CONTINUOUS") Linetype name

)

Note that there is no -1 group. AutoCAD remembers the last entry returned
from each table and returns the next one each time tblnext is called for that
table. When you begin scanning a table, be sure to supply a non-nil second
argument to rewind the table and return the first entry.

Entries retrieved from the Block table include a -2 group with the entity name

of the first entity in the Block definition (if any). Thus, given a Block called
BOX:

(tblnext "block") Retrieves Block definition
might return
((0 . "BLOCK*) Symbol type
(2 . *BOXY) Symbol name
(20, +,:0) Flags
(10 2.0 2.0 0.0) Origin X,Y,Z

(=2 . <Entity name: 40000126>) First entity
)

The entity name in the -2 group is accepted by entget and entnext, but not
by all of the other entity access functions. For example, you cannot use ssadd
to put it in a selection set. By providing the -2 group entity name to entnext,
you can scan the entities comprising a Block definition; entnext returns nil
after the last entity in the Block definition.

Note: 1f a Block contains no entities, the -2 group returned by tblnext is the
entity name of it’s Endblk entity.

16_0 Catalogue of AutoLISP Functions

Chapter 4

(tblsearch table-name symbol [setnext])

(terpri)

This function searches the symbol table identified by table-name (same as for
tblnext), looking for the symbol name given by symbol. Both names are
converted to uppercase automatically. If it finds an entry for the given symbol
name, it returns that entry in the format described for tblnext. If no such
entry is found, it returns nil. For instance:

(tblsearch "style" "standard") Retrieves text style

might return

((0 . “STYLE") Symbol type
(2, . "STANDARD") Symbol name
(78 50) Flags
(40 . 0.0) Fixed height
- 3 EROURS: KA Width factor
(50 . ©0.0) Obliquing angle
(TAoama) Generation flags
(3 o s Primary font file
{45, 10) Bigfont file

)

Normally, tblsearch has no effect on the order of entries retrieved by
tblnext. However, if tblsearch is successful and the setnext argument is
present and non-nil, the tblnext entry counter is adjusted so that the fol-
lowing tblnext call returns the entry after the one returned by this
tblsearch call.

See also: “Symbol Table Access” on page 69.

This function prints a newline on screen and returns nil. The terpri func-
tion is not used for file I/O. To write a newline to a file, use print or princ.

(textbox elist)

This function measures a desired text entity and returns the diagonal coordi-
nates of a box that encloses the text.

The elist must define a text entity. If fields that define text parameters other
than the text itself are omitted from elist, the current (or default) settings

are used. If textbox is successful it returns a list of two points; otherwise it
returns nil.

The minimum list accepted by textbox is that of the text itself.

(textbox " ((1 ./ "Hello world."))) might return ((0.0 0.0 0.0) (0.8 0.2 0.0))

In this case, textbox would use the current defaults for text to supply the
remaining parameters.

The points returned by textbox describe the bounding box of the Text entity
as if its insertion point is located at (0,0,0) and its rotation angle is 0. The first
list returned is generally the point (0.0 0.0 0.0) unless the Text entity is
oblique, vertical, or contains letters with descenders (such as g and p). The

Catalogue of AutoLISP Functions 161

AutoLISP Functions

(textpage)

(textscr)

value of the first point list specifies the offset from the text insertion point to
the lower-left corner of the smallest rectangle enclosing the text. The second
point list specifies the upper-right corner of that box. Regardless of the orien-
tation of the Text being measured, the point list returned always describes the
bottom-left and upper-right corners of this bounding box.

See also: “Text Box Utility Function” on page 26.

On single-screen AutoCAD installations, this function clears the AutoCAD
text window and displays it in front of the graphics window. The textpage
function is equivalent to textscr, except it clears any text that was previously
displayed in the text window. This function always returns nil.

Related topics: See textscr described next and graphscr on page 123.

On single-screen systems the textscr function switches from the graphics
screen to the text screen (like the AutoCAD Flip Screen function key). The
textscr function always returns nil.

Related topics: See textpage described previously and graphscr on
page 123.

(trace function ...)

This function is a debugging aid. It sets the trace flag for the specified
functions. Each time a specified function is evaluated, a trace display
appears showing the entry of the function (indented to the level of calling
depth) and prints the result of the function. For example:

(trace my-func) returns MY-FUNC

and sets the trace flag for function MY-FUNC. The trace function returns the
last function name passed to it.

Related topics: See untrace on page 165.

(trans pt from to [disp])

This function translates a point (or a displacement) from one coordinate sys-
tem to another. The pt argument is a list of three reals, which can be inter-
preted as either a 3D point or a 3D displacement (vector). The from argument
indicates the coordinate system in which pt is expressed, and to specifies the
desired coordinate system for the returned point. The optional disp argu-
ment, if present and non-nil, specifies that pt is to be treated as a 3D

Chapter 4
displacement rather than as a point. The fromand to arguments can be any
of the following:

* An integer code from the following table.

Table 4-16. Coordinate system codes

~Code | Coordinatesystem :
'»0 World (WCS) !

1 User (current UCS)

2 Display:

DCS of current viewport when used with code 0 or 1
DCS of current model space viewport when used with code 3

3 Paper space DCS (used only with code 2)

* Anentity name, as returned by the entnext, entlast, entsel, nentsel,
and ssname functions. This lets you translate a point to and from the
Entity Coordinate System (ECS) of a particular entity. (For some entities,
the ECS is equivalent to the WCS; for these entities, conversion between
ECS and WCS is a null operation.)

* A 3D extrusion vector (a list of three reals). This is another method of con-
verting to and from an entity’s ECS. However, this does not work for those
entities whose ECS is equivalent to the WCS.

The trans function returns a 3D point (or displacement) in the requested
to coordinate system. For example, given a UCS that is rotated 90 degrees
counterclockwise around the World Z axis

(trans (1.0 2.0 3.0) 0 1) returns (2.0 -1.0 3.0)
(trans ‘(1.0 2.0 3.0) 1..0) returns (-2.0 1.0 3.0)

The coordinate systems are discussed in greater detail in “Coordinate Sys-
tem Transformations” on page 36.

For example, if you wanted to draw a line from the insertion point of a piece
of text (without using Osnap), you’d convert the Text entity’s insertion point
from the Text entity’s ECS to the UCS -

(trans text-insert-point text-ename 1)

and feed the result to the From point: prompt.

Conversely, you must convert point (or displacement) values to their destina-
tion ECS before feeding them to entmod. For example, if you wanted to move
a Circle (without using the MOVE command) by the UCS-relative offset (1,2,3),
you'd need to convert the displacement from the UCS to the Circle’s ECS:

(trans *(1 2 3) 1 circle-ename)

-
Then you'd add the resulting displacement to the Circle’s centre point.

For example, if you have a point entered by the user and want to find out
which end of a Line it looks closer to, you’d convert the user’s point from the
UCS to the DCS

(trans user-point 1 2)

Catalogue of AutoLISP Functions 163

AutoLISP Functions

and each of the Line endpoints from the Line’s ECS to the DCS:

(trans endpoint line-ename 2)

From there you can compute the distance between the user’s point and each
endpoint of the Line (ignoring the Z coordinates) to determine which end
looks closer.

The trans function can also transform 2D points. It does this by filling in the
Z coordinate with an appropriate value. The Z component used depends on
the from coordinate system that was specified and whether the value is to be
converted as a point or a displacement. If the value is to be converted as a dis-
placement the Z value is always 0.0; if the value is to be converted as a point
the filled in Z is determined as follows:

Table 4-17. Converted 2D point Z values

From | Filled in Z value :

WCS 0.0

ucs current elevation

ECS 0.0

DCS Projected to the current construction plane
(UCS XY plane + current elevation)

PSDCS Projected to the current construction plane
(UCS XY plane + current elevation)

(type item)

This function returns the type of item, where the type is one of the following

items (as an atom). Items that evaluate to nil (such as an unassigned symbol)
returnnil.

Table 4-18. Symbol types

REAL Floating point numbers SUEBR Internal functions

FILE File descriptors EXSUBR External functions (ADS)
STR Strings PICKSET Selection sets

INT Integers ENAME Entity names

SYM Symbols PAGETB Function paging table
LIST Lists (and user functions)

For example, given the assignments:

(setg a 123 r 3.45 s "Hellol!" x *(a. b .c))
(setg £ (open "name" "r"))

164 Catalogue of AutoLISP Functions

Chapter 4

then
(type 'a) returns SYM
(tvpe a) returns INT
(type £} returns FILE
(type r) returns REAL
(type 8) returns STR
(type x) returns LIST
(type +) returns SUBR
(type nil) returns nil

The following example illustrates how you might use the type function.

(defun isint (a)

(if (= (type a) "INT) is TYPE integer?
T yes, return T
nil no, return nil

(untrace function ...)

(ver)

(vimon)

This function clears the trace flag for the specified functions, and returns the
last function name. It selectively disables the trace debugging aid. For exam-
ple, the following code clears the trace flag for function MY-FUNC:

{untrace my-func) returns MY -FUNC

Related topics: See trace on page 162.

This function returns a string that contains the current AutoLISP version num-
ber. It should be used (with equal) to check compatibility of programs. The
string takes this form:

"AutoLISP Release X.X"

where x. X is the current version number. For example:

(ver) might return "AutoLISP Release 12.0"

Applications can tell what version of AutoLISP is being used by examining the
string returned by ver.

This function is no longer needed to allow virtual function paging, but
remains valid to provide compatibility with previous versions. See “Virtual
Function Paging” on page 180.

Catalogue of AutoLISP Functions 165

AutolLISP Functions

(vports)

This function returns a list of viewport descriptors for the current viewport
configuration. Each viewport descriptor is a list consisting of the viewport
identification number and the coordinates of the viewport’s lower-left and
upper-right corners.

If the AutoCAD system variable TILEMODE is set to 1 (on), the returned list
describes the viewport configuration created with the AutoCAD VIEWPORTS
command. The corners of the viewports are expressed in values between 0.0
and 1.0, with (0.0, 0.0) representing the lower-left corner of the display
screen’s graphics area, and (1.0, 1.0) the upper-right corner. If TILEMODE is 0
(off), the returned list describes the viewport entities created with the MVIEW
command. The viewport entity corners are expressed in paper space coordi-
nates. Viewport number 1 is always paper space when TILEMODE is off.

For example, given a single-viewport configuration with TILEMODE on, the
vports function might return this:

((L (0.0 0.0F (1.8 L.@)}))

Similarly, given four equal-sized viewports located in the four corners of the
screen and TILEMODE on, the vports function might return this:

({5 (0.5 0.0) (1.0 0.5))
(2 (0.5 0.5) (1.0 1.0))
(3 (0.0 0.5 " (0.5-1.00)
(4 (0.0°0.0) (0.5 0.5)))

The current viewport’s descriptor is always first in the list. In the previous
example, viewport number 5 is the current viewport.

(wecmatch string pattern)

This function performs a wild card pattern match on string. The stringis

compared to the pattern to see if they match. If so, T is returned: otherwise,
nil is returned.

Both string and pattern can be either a quoted string or a variable. The
pattern can contain the following wild card pattern matching characters.
Only the first 500 characters (approximately) of the st ringand pattern are
compared; anything beyond that is ignored.

Table 4-19. Wild card characters

: Character | ‘Definition :
(Pound) Matches any single numeric digit
@ (A Matches any single alphabetic character
(Period) Matches any single nonalphanumeric character

Matches any character sequence, including an empty one. It
* (Asterisk) can be used anywhere in the search pattern: at the beginning,
middle, or end

7 (Question mark) Matches any single character

166 Catalogue of AutoLISP Functions

Chapter 4

Table 4-19. Wild card characters (continued)

R L D e A T

B vk

_ (Tilde) If it is the first character in the pattern, then it matches any-
thing except the pattern

fio e e) Matches any one of the characters enclosed

[~...1 Matches any single character not enclosed

- (Hyphen) Used inside brackets to specify a range for a single character
(Comma) Separates two patterns
(Reverse quote) Escapes special characters (reads next character literally)

For example:

(wcmatch "Name" "N*") returns T

This tests the string Name to see if it begins with the character N. You can use
commas in a pattern to enter more than one pattern condition. This example
performs three comparisons:

(wocmatch "Name" "272,~*m* N*") returns Y

If any of the three pattern conditions is met, wematch returns T. In this case
the tests are these: Name has three characters (false); Name does not contain an
m (false); and Name begins with N (true). At least one condition was met, so this
expression returns T.

The compare is case sensitive, so upper- and lowercase characters must match.
It is valid to use variables and values returned from AutoLISP functions for
string and pattern values.

If you need to test for a wild'card character in a string, you can use the single
reverse quote character () to escape the character. Escape means that the char-
acter following the single reverse quote is not read as a wild card character; it

is compared at its face value. For example, to search for a comma anywhere in
the string NWame, enter this:

(wematch "Name" "*°, *w) returns nil

Caution: Because other wild card characters might be added in future releases
of AutoLISP, it is a good idea to escape all nonalphanumeric characters in the
pattern to ensure upward compatibility.

Both the C and AutoLISP programming languages use the backslash (\) as an
escape character, so you need two backslashes (\\) to produce one backslash
(\) in a string. To test for a backslash (\) character anywhere in Name, you enter
this:

(wcmatch "Name" "* \\%x") returns nil

All characters enclosed in brackets ([. . .]) are read literally, so there is no need
to escape them, with the following exceptions: the tilde character (~) is read
literally only when it is not the first bracketed character (as in " [A~BC] "); oth-
erwise it is read as the negation character, meaning match all characters except
those following the tilde (as in " [~ABC]). The dash character (-) is read liter-
ally only when it is the first or last bracketed character (as in " [-ABC] " or
" [ABC-]"), or follows a leading tilde (asin " [~-ABC]). Otherwise, the dash

Catalogue of AutoLISP Functions 167

AutoLISP Functions

character (-) is used within brackets to specify a range of values for a specific
character. The range only works for single characters, so "STR[1-38]"
matches STR1, STR2, STR3, and STRS, and " [A-Z] " matches any single
uppercase letter.

The closing bracket character ("] ") is also read literally if it is the first brack-
eted character or follows a leading tilde (asin "[]ABC]" or " [~]ABC]").

(while testexpr expr ...)

This function evaluates testexpr and if testexpr is not nil, evaluates the
other exprs and then evaluates testexpr again. This continues until tes-
texpris nil. The while function then returns the most recent value of the
last expr. For example, given

(setg test 1)

then

(while (<= test 10)
(some-func test)
(setg test (l+ test))

)

calls user function some-func ten times, with test set to 1 through 10. It
then returns 11, which is the value of the last expression evaluated.

(write-char num [file-desc])

This function writes one character to the screen or to the open file described
by file-desc. The numargument is the decimal ASCII code for the character
to be written and is also the value returned by write-char. For example:

(write-char 67) returns 67

and writes the letter C on the screen. Assuming that £ is the descriptor for an
open file:

(write-char 67 f) returns 67

and writes the letter C to that file.

The various operating systems under which AutoCAD and AutoLISP run use
several different conventions to signal the end of a line in an ASCII text file.
UNIX systems, for example, use a single newline character (LF, ASCII code 10),
whereas DOS systems use a pair of characters (CR/LF, ASCII codes 13 and 10}
for the same purpose. To facilitate development of AutoLISP programs that
work in a portable fashion on all supported operating systems, write-char
translates a newline character (ASCII code 10) into the end-of-line character

(or character sequence) used by the operating system you’re currently using.
Thus, on a DOS system:

(write-char 10 f) returns 10

but writes the character sequence CR/LF (ASCII codes 13 and 10) to the file.
write-char cannot write a NUL character (ASCII code 0) to a file.

See also: Appendix F for a list of ASCII codes.

168 Catalogue of AutolISP Functions

Chapter 4

(write-line string [file-desc])

This function writes string to the screen or to the open file described by
file-desc. It returns string quoted in the normal manner, but omits the
quotes when writing to the file. For example, assuming that £ is a valid open
file descriptor:

(write-line "Test" f) writes Test and returns "Test"

(xdroom ename)

This function returns the amount of extended entity data space that is avail-
able for the entity ename. If unsuccessful, xdroom returns nil.

Because there is a limit (currently, 16 kilobytes) on the amount of extended
data that can be assigned to an entity, and because multiple applications can
append extended data to the same entity, this function is provided so an appli-
cation can verify that there is room for the extended data it wishes to append.
It can be called in conjunction with xdsize, which returns the size of an
extended data list.

Here is an example that looks up the available space for extended entity data
of a Viewport entity. Assuming the variable vpname contains the name of a
Viewport entity,

(xdroom vpname) returns 16162

In this example, 16,162 bytes of the original 16,383 bytes of extended entity
data space are available, meaning 221 bytes are used. The amount of extended
data space that is used can be looked up directly using the xdsize function.

(xdsize list)

This function returns the size (in bytes) that 1ist occupies when it is
appended to an entity as extended entity data . If unsuccessful, this function
returns nil,

The I1ist argument must be a valid list of extended entity data that contain
an application name previously registered using the regapp function. Brace
fields (group code 1002) must be balanced. An invalid 1:ist generates an error
and places the appropriate error code in the ERRNO variable. If the extended
data contains an unregistered application name, you see this error message
(assuming CMDECHO is on):

Invalid application name in 1001 group

The 1ist can start with a -3 group code (the extended data sentinel), but it is
not required. Because extended entity data can contain information from mul-
tiple applications, the list must have a set of enclosing parentheses.

Catalogue of AutoLISP Functions 169

AutolLISP Functions

For example:

(-3 ("MYAPP" (1000 . "SUITOFARMOR")
(1002 .\ =iy
(1040 . 0.0)
(1040 ' 150)
(1002 . "}my

)

Here is the same example without the -3 group code. This list is just the cdr of
the first example, but it is important that the enclosing parentheses are

included:
(("MYAPP" (1000 . "SUITOFARMOR")
(X002 . rim)
(1040 . 0.0)
CLOAT: . i)
CLODE i MR

)

This is an invalid xdsize list because there are no enclosing parentheses:

("MYAPE" (1000 . "SUITOFARMOR") WRONG
(D02 5 M)
(1040 . 0.0)
(1040 . 1.0)
(1002 ., "}")

)

Here is an example in which xdsize is sent a list that contains extended entity
data from two registered applications:

(setg nl (list "MYAPP" (cons 1000 "SUITOFARMOR")
(cons 1040 0.0)
(cons 1040 1.0)
)
)
(setqg n2 (list "YOURAPP" (cons 1000 "SUITOFARMOR")
(cons 1040 0.0)
(cons 1040 1.0)
)
)
(regapp "MYAPP™)
(regapp "YOURAPP")
(xdsize (list nl n2)) returns 48

170 Catalogue of AutoLISP Functions

Chapter 4

(xload application [onfailure])

This function loads an AutoCAD Development System (ADS) application. If
the application is successfully loaded, the application name is returned; other-
wise, an error message is issued. This function fails if you attempt to load an
application that is already loaded.

The application argument is entered as a quoted string or a variable that
contains the name of an executable file. At the time the file is loaded, it is ver-
ified to be a valid ADS application. Additionally, the version of the ADS pro-
gram, ADS itself, and the version of AutoLISP running are checked for compat-
ibility.

(xload "/myapps/ame") if successful, returns " /myapps/ame"

If the xload operation fails, it normally causes an AutoLISP error. However, if
the onfailure argument is supplied, xload returns the value of this argu-
ment upon failure instead of issuing an error message. This feature of xload is
similar to that in the load function.

Related topics: See the Introduction to the AutoCAD Development System
Programmer’s Reference for more information.

(xunload application [onfailure])

This function unloads an ADS application. If the application is successfully
unloaded, the application name is returned; otherwise, an error message is
issued.

Enter applicationasa quoted string or a variable containing the name of an
application that was loaded with the xload function. The application name
must be entered exactly as it was entered for the xload function. If a path
(directory name) was entered for the application in x1load, it can be omitted
in the xunload function.

For example, the following function will successfully unload the application
loaded by the xload function shown previously.

(xunload "ame") if successful, returns "ame"

If the xunload operation fails, it normally causes an AutoLISP error. However,
if the onfailure argument is supplied, xunload returns the value of this
argument upon failure instead of issuing an error message. This feature of
xunload is similar to that in the 1oad function.

Related topics: See the Introduction to the AutoCAD Development System
Programmer’s Reference for more information.

(zerop item)

This function returns T if item is a real or integer and evaluates to zero; oth-
erwise it returns nil. It is not defined for other item types. For example:

(zerop 0) returns 1
(zerop 0.0) returns T
(zerop 0.0001) returns nil

Catalogue of AutolISP Functions 171

AutolISP Functions

ADS Defined AutoLISP Functions

The following functions are defined by the ADS program acadapp (this has the
extension .exp on DOS platforms) and are only available if that program is
loaded. Before calling these functions, you might want to use the x1oad func-
tion to verify that acadapp is available.

(acad_colordlg colornum [flag])

Displays the standard AutoCAD colour selection dialogue box.

The colornum argument is an integer in the range 0-256. It specifies the
AutoCAD colour number to display as the initial default. If the optional flag
argument is supplied and ni1 the BYLAYER and BYBLOCK buttons are disabled:;
if it is not supplied or is non-ni1 these buttons are enabled.

The acad_colordlg function returns the colour number that the user selects
via the OK button. If the user cancels the dialogue box, acad_colordlg
returns nil.

Example

The following code prompts the user to select a colour. It specifies a default of
green:

(acad_colordlg 3)

Note: A colornum value of 0 defaults to sysrock and a value of 256 defaults
to BYLAYER.

(acad_helpdlg helpfile topic)

Displays the standard AutoCAD Help dialogue box using a specified file. You
can call this function from your AutoLISP routine to provide help on a stan-
dard AutoCAD command or your own application specific help.

The helpfile argument is a string that specifies an AutoCAD help file (the
-hlp filename extension is optional). The topic argument is a keyword that
specifies the topic the dialogue box initially displays. If the topic argument is
an empty string (* "), the Help dialogue box displays the introductory part of
the help file.

For your own applications, you will usually specify a customized help file.
Help file format is described in chapter 2 of the AutoCAD Customization
Manual.

172 ' ADS Defined AutoLISP Functions

Chapter 4

Examples

You can create the following file, called achelp.hlp, which is an AutoCAD help
file (AutoCAD help files must have a .hlp extension):

The acad_helpdlg function displays the standard AutoCAD

Help dialogue box. The calling format is:

acad_helpdlg <helpfile> <topic>
\HELPFILE
The <helpfile> argument specifies an AutoCAD help file.
The .hlp filename extension is optional.
\TOPIC
The <topic> argument specifies the topic to initially
display.

If the <topic> argument is empty ("") acad_helpdlg displays
the introductory part of the specified help file.

The following code calls acad_helpdlg to display the introductory text in the
help file achelp.hlip:

(acad_helpdlg "achelp" "")

The following code is almost the same, but displays the help page associated
with the Tor1c keyword:

{acad_helpdlg "achelp™ "topic")

(acad_strlsort list)

Sorts a list of strings by alphabetical order. The 1ist argument is the list of
strings to be sorted. The acad_strlsort function returns a list of the same
strings in alphabetical order.

If the argument list isn't well formed or if there isn’t enough memory to do the
sort, acad_strlsort returnsnil.

Example
The following code sorts the list of abbreviated month names:

(Setq mos [(|IJan n “Feb" "Ma_.r n "Apr" "May " "Jun"

" Jul] n Aug n n Sep " " Oct n " NOV " " DEC " })
(acad_strlsort mos)

and returns the following list:

{ " Apr n n Aug " " DEC " " Feb " " Tan" n Ju]_ "
n Jun n n Mar " L] May " "NOV " n Oct n n Sep n }

© ADS Defined AutoLISP Functions 173

AutolISP Functions

ADS Defined Commands

(c:bhatch pt [ss] [vector])

(setg pl (3 5)
ssl (entlast)) Selects the last entity created
(c:bhatch pl) Hatches the area defined by the boundary Polyline
created by the point (3,5)
(c:bhatch pl ss) - Hatches the area defined by both the boundary Polyline
created by the point (3,5) and the selection set ==
(c:bhatch pl *(1,0)) Hatches the area defined by the boundary Polyline

This section lists the ADS defined AutoCAD commands that have a special
means of access from AutoLISP. They are available only when the acadapp ADS
program is loaded.

Uses the BHATCH command to hatch a selected area.

The first argument to this function is a point pt that is an internal point of the
area to receive a boundary hatch; this point (if valid) produces a Polyline
boundary that defines the hatching area. The ss argument is a selection set
that provides additional boundary entities. The last argument vector is a
point list that describes the direction vector BHATCH uses for ray casting, if this
argument is not provided it defaults to (0 0), the “Nearest” method. The
vector argument accepts a 2D or 3D point list; however, if a 3D point is sup-
plied, the Z coordinate is ignored.

The AutoCAD Reference Manual describes the BHATCH command and the con-
cept of ray casting in greater detail.

Examples

The following examples assume that a valid Hatch pattern name has been set
to the HPNAME system variable.

created by the point (3,5) using ray casting of +X

The coordinate values used in the vector argument are real numbers and can

be of any value. The following table provides examples of values that match
those used in the BHATCH dialogue box.

Table 4-20. Ray casting direction and vector values

(0 0) . (Nearest)
(1 0) +X (0 deg.)
(0 1) +Y (90 deg.)
(-1 0) -X (180 deg.)
(0 -1) -Y (270 deg.)
(1000 1732) 60 deg. (approx.)
1 -n 315 deg.

174 ADS Defined Commands

Chapter 4

If successful, the ¢ : bhatch function returns the entity name of the Hatch cre-
ated, and ni1 if it fails. If c : bhatch fails, an error message is available by call-
ing the bherrs function.

(c:bpoly pt [ss] [vector])

(bherrs)

Uses the BPOLY command to create a boundary Polyline.

The first argument to this function is a point pt that is an internal point of the
area to receive the boundary Polyline. The ss argument is a selection set that
provides additional boundary entities. The last argument vectoris a point list
that describes the direction vector BPOLY uses for ray casting (see table 4-20);
if this argument is not provided, it defaults to (0 0), the “Nearest” method. The
vector argument accepts a 2D or 3D point list; however, if a 3D point is sup-
plied, the Z coordinate is ignored.

The AutoCAD Reference Manual describes the BPOLY command and the concept
of ray casting in greater detail.

If successful, the c:bpoly function returns the entity name of the boundary
Polyline created, and ni1 if it fails. If ¢ : bpoly fails, an error message is avail-
able by calling the bherrs function.

Gets an error message generated by a failed call to c:bhatch or c:bpoly. If
successful, it sets the result to contain the message string; otherwise, the result

isnil,
Example

After invoking c:bhatch, your program can include the following error-
checking code:

(if (bherrs) (prine. (car (bherrs))))

If the call failed because HPNAME wasn’t initialized, bherrs returns the string
"bhatch: no hatch pattern defined\n", which the princ call displays
at the AutoCAD prompt line.

(c:psdrag mode)

Invokes the PSDRAG command to set the PSDRAG value. The mode argument is
an integer that should equal either 0 or 1. The current value of PSDRAG affects
interactive use of the PSIN command. If PSDRAG is 1, PSIN generates the
PostScript image as the user drags it to scale it. If PSDRAG is 0, PSIN generates
and drags only the bounding box of the image. If successful, the c:psdrag
function returns the new value of PSDRAG, and ni 1 if it fails.

See chapter 14 of the AutoCAD Reference Manual and chapter 10 of the
AutoCAD Customization Manual for more information.

ADS Defined Commands 175

Example

The following code turns on PSDRAG by setting it to 1. The next interactive
invocation of PSIN generates the PostScript image as the user drags it during
scaling.

(c:psdrag 1)

(c:psfill ent pattern [argl [arg2]] ...)

Invokes the PSFILL

The ent argument is the name of the Polyline. The pattern argument is a
string containing the name of the fill pattern. The pattern string must be
identical to the name of a fill pattern defined in the current acad.psf file. The
argument s are arguments to the internal PostScript fill procedure: their num-
ber and type correspond to the arguments required by pattern, as defined in
acad.psf. Each argument is either an integer or a real value. There can be from
0 to 25 arguments per pattern. If the call specifies fewer arguments than the
pattern defines, the pattern’s default values are used for the remaining argu-
ments. If successful, c:psfill returns T; it returns ni1 if it fails.

Example

The Greyscale fill pattern has a single argument. The following call uses the
default Greyscale argument, 50 percent:

(c:psfill ename "Greyscale")

This call specifies a 10 percent greyscale instead:

(c:psfill ename "Greyscale" 10)

See: Chapter 10 of the AutoCAD Customization Manual for more information.

(c:psin filename position scale)

Invokes the PSIN command to import an encapsulated PostScript (.eps) file.
The £ilename argument is a string that contains the name of the PostScript
image (you don’t have to specify the .eps filename extension). The position
argument is a point specifying the insertion point of the (anonymous)
PostScript block. The scale argument is a real value specifying the scale fac-
tor. If successful, c:psin returns the name of the newly created entity; it
returns nil if it fails.

Example

The following code imports a PostScript file called sample.eps, inserts it at
(24,19), and scales it with a factor of 25:

(c:psin "sample"™ ' (24 19) 25)

176

Chapter 5

Memory Management and
Programming Techniques

Memory Management

AutoCAD is designed to adjust its memory usage as necessary. Although some sys-
tems with limited memory may require fine-tuning, most users will never need the
information provided in this section.

All symbols, user-defined functions, and the standard functions this guide
describes are stored in your computer’s memory for the duration of the
AutoCAD editing session only. When AutoLISP starts up, it acquires two large
areas of memory for itself. The first, called the heap, is the area where all func-
tions and symbols (also called nodes) are stored; the more symbols and func-
tions you have (and the more complex your functions), the more heap space
is used. The second area, called the stack, holds function arguments and partial
results; the deeper you nest functions, or the more recursion your functions
perform, the more stack space is used.

Node Space

A node is a memory structure that can represent all AutoLISP data types. Cur-
rently AutoLISP uses 12-byte nodes. To avoid memory fragmentation and
heap management overhead, nodes are allocated from the heap in groups
called segments. By default, a segment is 514 nodes (6168 bytes).

AutoLISP maintains a list of free nodes (nodes that are not currently bound to
a symbol). When it needs a node in which to store a symbol or value, AutoLISP
searches the free list to find an available node. If there are none, an automatic
garbage collection is performed, placing any nodes no longer bound to a sym-
bol on the free list. Then one is chosen to satisfy the request.

If the garbage collection results in too few free nodes, AutoLISP requests one
additional segment from the heap. If the request is successful, the new nodes
are placed on the free list and one of them is chosen to satisfy the original
request for a node. If no additional segments can be obtained from the heap,
virtual function paging is invoked to free some nodes by swapping out the
least recently used function; otherwise, an insufficient node space message is dis-
played and the function requesting node space is aborted. You should note
that node space is never returned to the heap until you exit AutoCAD.

MemcryManagement ;Jrlrd Pfogramming Techniques ' T el % 177

Memory Management and Programming Techniques

It is possible to force a garbage collection using the ge function:

(gc)

However, note that garbage collections are time-consuming operations that
should not be performed unnecessarily. They are best left to AutoLISP’s auto-
matic mechanism, which performs them only when necessary.

Recovering Node Space

You might find you are creating functions and symbols that you need for only
a short while. When they’re no longer useful, undefine them by assigning nil
to them. For instance, if you've loaded and used a function named setup and
have no further need of it, you can use

(setg setup nil)

to get rid of it. Assigning nil recovers the node space used by the function, and
other functions and symbols can now use it.

If you want to free up the node space used by a symbol of type FILE (as
returned by the open function), you must close it before setting it to nil.
There is a finite number of open file slots, and failure to close a file causes its
slot to remain in use, limiting the number of new files that can be opened.

Note: Prior to Release 12, AutoCAD maintained a list of all defined functions
and symbols in the symbol, atomlist. This list is no longer maintained in
this manner, therefore the method of “chopping the atomlist” is no longer a
valid method for clearing out functions and symbols. You can still retrieve a
list of defined functions and symbols by using the atoms-family function:

(atoms-family 0)

This function can be used to retrieve the complete list or just selected symbols,
see page 95 for more information on the atoms-family function.

Technical Notes

Note: The following information is for the benefit of experienced LISP hackers only.
Novices can (and should) ignore this discussion. This section describes internal
AutoLISP mechanisms that are subject to change without notice.

Memory Statistics

The mem function

(mem)

displays the current state of AutoLISP’s memory, and returns nil. Nodes: is the
total number of nodes allocated so far, which should equal the node segment
size multiplied by the number of segments. Free nodes: is the number of nodes
currently on the free list placed there by a garbage collection. Segments: is the
number of node segments allocated, and Allocate: is the current segment size.
Collections: is a count of garbage collections, whether automatic or forced.

178

Memory Management

Chapter 5

String Space

String storage space comes out of the same heap as node segments. If your pro-
gram calls the manual allocation functions (described later) to allocate all of
available memory as nodes, you're very likely to get an insufficient string space
message, which is just as devastating as insufficient node space. We recommend
you let the automatic allocation of nodes handle this so that you end up with
sufficient string space. String space is used for everything from symbol names
to prompt strings and menu strings that are passed to AutoLISP for evaluation.
If you use long menu items with AutoLISP expressions for evaluation, these
need a significant amount of contiguous string space from the heap.

Symbol Storage

The memory structure in AutoLISP is pointer intensive. The use of nodes is per-
vasive and everything is represented in the node structure. The simple act of
setting a symbol equal to a value, as in

(setqg longsym 3.1415)

requires two nodes; one to store the symbol name, and one to store its value.
If the symbol name is six or fewer characters long, the name is stored directly
in the symbol name node; otherwise, string space is allocated from the heap
for storage of the name, and the symbol name node then points to this string.
In short, using short symbol names (six or fewer characters) reduces string
space requirements and heap fragmentation.

Manual Allocation

You can use the alloc and expand functions to manually control node and
string space allocation and so increase the efficiency of your applications. By
using these expressions at the beginning of your acad.lsp file, you can preallo-
cate the nodes and also reserve some string space. This can reduce the number
of garbage collections, improving the run-time efficiency of your application.

You can use the alloc function to alter the size of future segment requests to
be something other than 514 nodes apiece,

(alloc number)

The alloc function sets the segment size to number nodes and returns the pre-
vious setting.

Using the expand function, you can manually allocate node space by request-
ing a specified number of segments.

(expand number)

number is the number of segments you want to allocate.

The expand function returns the number of segments it was able to acquire
from the heap, which might be far fewer than requested due to the amount of
remaining heap space.

Example:

(alloc 1024)

B Memory Management “ 179

Memory Management and Programming Techniques

sets the segment size to 1024 nodes, which requires 12,488 bytes of heap space
for each segment.

(alloc 100)

sets the segment size to 100, which requires only 1200 bytes per segment.
With the segment size set to the default of 512 nodes, a call to
(expand 10)

requests 10 segments (61480 bytes). It doesn’t hurt to ask for more segments
than are available.

Here’s a practical example:

(alloc 3000) Sets node segment size to 3000 nodes
(expand 1) Gets 3000 free nodes (one segment)
(alloc 10000) Sets large segment size to avoid adding more segments

This scheme uses 36,000 bytes for node space, leaving the remainder of the
heap for string space. The nodes are preallocated and placed on the free list.
This means that no garbage collections are necessary until you use up all 3000
nodes. Once you use up these nodes, of course, garbage collections are invoked
to satisfy further node requests. The (alloc 10000) sets the segment size to
avalue that prevents additional segments from being allocated from the heap,
thereby reserving this space for string use.

If you apply the opposite strategy by sequentially reducing the segment size
until a request for one node was unsuccessful (i.e., “(alloc 1) (expand 1)”
returns 0), you use up all of your heap for node space, leading to an insufficient
string space error. This is not recommended, since AutoLISP will become useless
without available string space.

Virtual Function Paging

Virtual function paging can only take effect after all other types of virtual memory
have been exhausted; this seldom happens on most platforms. The vmon function is
provided for compatibility with previous versions of AutoLISP.

If your AutoLISP application grows too large to fit in the available node space,
you can enable the AutoLISP virtual function pager to allow your program to
continue to grow. To do this, execute the vmon function before the first defun
in your program:

(vmon)

This enables virtual function paging for the remainder of the AutoCAD draw-
ing session. Once you enable it, function paging cannot be turned off. Only
functions created via defun subsequent to the vmon call are eligible for paging,
so if you defun functions before calling vmon, they won't be paged out and
might still cause insufficient node space terminations.

After the vmon function is executed, AutoLISP pages out infrequently used
functions whenever it runs out of node space, and automatically reads them
back in when needed. Don’t worry about this paging as it is handled automat-
ically and is completely transparent to your program. The functions are
swapped to a temporary file which is managed through the AutoCAD file

pager.

180

Memory Mahagemeﬁt

Chapter 5

The virtual memory system only pages functions; you must still have sufficient
node space to accommodate all data lists, function names, and variable names
used by your program.

The mem function displays two additional fields when vmon is activated. Swap-
ins: is the number of functions swapped in from the page file created for the
virtual memory system. These are demand paged functions brought in from
the page file when requested in a simple function call. The Page file: entry is
the size of the page file created to hold the functions that have been paged out.

After the vmon function is executed, all defuns place a new node called a page
table at the start of every function list. This node is added before the list con-
taining the formal arguments. Page table nodes are exclusively for the use of
the pager, and should not be manipulated in any way by user programs. The
type function returns paceTs for these nodes.

When AutoLISP runs out of nodes, the least frequently used function is
swapped out by writing it to the paging file, saving the page file address in the
page table, and releasing all of the function’s nodes following the page table.
The page table is marked to indicate that the function is swapped out. When
a swapped out function is evaluated, it is read back in from the paging file
(possibly swapping out other functions) prior to execution. Once a tunction
has been written out to the paging file, subsequent swapouts simply release its
nodes; there’s no need to write out the function, since it’s already present in
the file.

In AutoLISP, functions created with defun are just lists, and can be manipu-
lated like any other list. Programs that do this must be cognizant of the oper-
ation of the pager (or never use vmon). First of all, functions created with
defun have a page table node in front, so you should skip it if you're scanning
the function. If you create a function yourself as a list (bypassing defun), it
works fine, but won’t be eligible for swapping so you can easily run out of
memory if you do this a lot. Conversely, you can lock a function in memory
by redefining it without its page table. For instance, to lock a function with the
name zorp into memory, you could use:

(setg zofrp (¢dr zorp))

to delete the leading page table. Page tables print as a space when you print
the function. You can tell if a function is swappable by checking whether
there’s a space after the first left parenthesis: if so, it’s swappable.

If you're attempting to scan a function as data and it's swapped out, you tind
only the page table in the function list. Accessing the function doesn’t swap it
in—only evaluating it does this. So if you're constructing functions and modi-
fying them on the fly, build them as lists instead of using defun, or use the
trick above to lock them into memory.

Memory Management 181

Memory Management and Programming Techniques

Good Programming Techniques

This section provides some useful programming techniques for both novices
and experienced AutoLISP programmers. It is not intended to be a tutorial; rec-
ommended texts on the LISP programming language are mentioned in the
introduction on page 1.

General Code Organization

The organizational methods you develop for commenting and indenting your
code are completely up to you; these are purely for the benefit of the program-
mer and the end user and have no bearing on the code itself. If appropriate,
you can develop standards for yourself or your group so that the code you
develop maintains some consistency and looks professional.

Comments

Using comments in program code is very important. Comments are useful to
both the programmer and future users who may need to revise a program to
suit their needs. A comment in AutoLISP is anything on a line that follows a
semicolon (;). Some of the uses for comments are the following:

e give a title, authorship, and creation date

* provide instructions on using a routine

¢ make explanatory notes throughout the body of a routine
¢ make notes to yourself during debugging

e allow for characters that provide visual aesthetics

Liberal commenting is effort well rewarded when writing AutoLISP programs.
Both block comments (those that fill entire lines) and in-line comments (those
following a semicolon on a line of executable code) are useful. The LISP frater-
nity has developed workable conventions for different classes of comments
(see, for example, “Common LISP” by Guy L. Steele Jr.), and some of the Asp
files provided with AutoCAD (but not all of them!) provide good examples of
commenting style. The file ai_utils.Isp is extensively commented and contains
some interesting and useful AutoLISP routines.

Keep the following points in mind when developing a commenting style:

e The description portion of the header can describe the usage of the file in
enough detail so it can be used without resorting to other documentation.

* The number of semicolons preceding a comment and a comment’s place-
ment in the file can help to indicate the contents or importance of the
comment.

* Many monitors can display only 80 columns of text; if you have a com-
ment starting in the 81st column, it might not be displayed.

The rules of the language are flexible, and it is much more important that com-
ments be present than they obey any particular layout rules.

182

Good Programming Techniques

Chapter 5

Indenting and Alignment

The extensive use of parentheses in AutoLISP can make it difficult to read. The
traditional technique for combatting this confusion is indentation. This
means laying out the program so that the more deeply nested a line of code is,
the farther to the right it starts. The parentheses get so deep that typical inden-
tation standards move only a couple of spaces further right for each level, in
contrast to the typical C-language standard of four spaces per level.

Indentation rules are harder to specify in prose than they are to indicate by
example. The best approach for developing good code layout is reading and
emulating other authors’ code that you find particularly pleasing and easy to
read. Also, numerous LISP editing systems include so-called “pretty-printers,”
which are programs that read arbitrarily laid out LISP code and reformat it
with suitable indentation.

Programming Tips

We cannot cover every aspect of LISP programming techniques in this section;
however, we will discuss some of the more important issues that relate to pro-
gramming in AutoLISP. If you are having a problem with part of your code, it
is often helpful to look at other AutoLISP programs to see how they have han-
dled similar situations.

Error Handling

AutoLISP provides a method for dealing with user (or program) errors. With
the *error* function you can ensure that desired system variables or a partic-
ular AutoCAD state is returned to after an unexpected error occurs. Through
this user-definable function you can assess the error condition and return an
appropriate message to the user. If this function has not been defined or is
nil, the standard error handler will, upon error, cease AutoLISP evaluation,
print an error message, then display a traceback of the calling function and its
callers up to 100 levels deep. It is often beneficial to leave this standard error
handler in effect while debugging your program.

Before defining your own *error* function, it is usually preferable to save the
current contents of *error* so that the previous error handler can be restored
upon exit. When an error condition exists, AutoCAD calls the currently
defined *error* function and passes it one argument, which is a text string
describing the nature of the error. Typically your *error* function should be
designed to exit quietly after a (Ctr]+(C) or an exit function call. The standard
way to accomplish this is to include the following statements in your error
handling routine:

(if (/= msg "Function cancelled")

(if (= msg "quit / exit abort™")
{peing)
(princ (strcat "\nError: " msg))
)
(princ)

Good Programming Techniques 183

Memory Management and Programming Techniques

184

This code examines the error message passed to it and ensures that if a real
error is detected, the user will be informed of the nature of the error, at least
as much as AutoLISP itself knows. If the user cancels the routine while it is
running, nothing is returned from this code. Likewise, if an error condition is
programmed into your code and the exit function is called, nothing is
returned. It is presumed that you will have already explained the nature of the
error via print statements of some sort. Remember to include a terminating
call to princ if you don’t want a return value printed at the end of an error
routine.

If you are using UNDO calls to allow your routine to be undone in a single step,
you must provide the balancing Undo calls that would be called if your routine
exited normally. In fact, you might want to have AutoCAD UNDO everything
or the last part of whatever it is that your routine has created. Programs can
use the system variables UNDOCTL and UNDOMARKS to determine how (or if
at all) it should call UNDO.

The main caveat about error handling routines is that they are AutoLISP func-
tions just like any other, and can be cancelled by the user. So keep them as
short and as fast as possible. This will increase the likelihood that all of it will
execute if called.

Input Validation

You should protect your code from unintentional user errors. The AutoLISP
user input getxxx functions do much of this for you, usually guaranteeing
that the item entered by the user is at least syntactically correct. However, its
easy and dangerous to forget to check for adherence to other criteria that the
program requires, but which the service functions themselves can’t check.
Input validity checking is tedious, but its omission can seriously affect a pro-
gram'’s integrity.

Loading

AutoLISP programs are usually provided in the form of .Isp files to be loaded
by the load function. Besides creating functions for the user to call, 1oad pro-
vides an opportunity for the programmer to tell the user how to use the pro-
gram. Since AutoLISP evaluates the expressions in the file, if there is a call to
the princ function (or print, prini, or the like), you can display any desired
information at the prompt line. You can also suppress what AutoLISP would
normally print by making the very last line of the file “ (princ).”

The loading of a file provides other opportunities for calling AutoLISP func-
tions. Any code in a .Isp file that is not part of a defun statement will be exe-
cuted when that file is loaded. You can use this to set up certain parameters or
perform any other initialization procedures in addition to displaying desired
textual information as described above.

Foreign Language Support

If you develop AutoLISP programs that might be used with a foreign language
version of AutoCAD, the standard AutoCAD commands and keywords will be
automatically translated if you precede each command or keyword with the
underscore character “ _ ”. The following example demonstrates this:

(command "_line" ptl pt2 pt3 "_c")

Good Progfamming Techniques

Chapter 5

Entity Access Functions

You should be aware that the entity access functions are relatively slow. It is
usually best to get the contents of a particular entity (or symbol table entry)
once and keep that information stored in memory, rather than repeatedly ask-
ing AutoCAD for the same data. Just be sure that the data remains valid; if the
user has an opportunity to alter the entity or symbol table entry, you should
re-issue the entity access function to ensure validity of the data.

Point Transformations

If you're doing point transformations with the trans function and need to
make that part of a program run faster, you can construct your own transfor-
mation matrix on the AutoLISP side by using trans once to transform each of
the “basis vectors” (00 0), (100), (010), and (00 1). Of course, writing matrix
multiplication functions in LISP isn’t fun, so you probably shouldn’t bother
unless your program is doing a lot of transformations.

Unit Conversion

The first time cvunit converts to or from a unit during a drawing editor ses-
sion, it must look up the string that specifies the unit in acad.unt. If your appli-
cation has many values to convert from one system of units to another, it is
more efficient to convert the value 1.0 by a single call to cvunit, then use the
returned value as a scale factor in subsequent conversions. This works for all
units defined in acad.unt except temperature scales, which involve an offset as
well as a scale factor.

Good Programming Techniques 185

Appendix A
AutoLISP and ADS Functions

The table in this appendix shows the current AutoLISP functions and the cor-
responding ADS functions. It's meant to make it easy for you to compare the
two function sets and the argument lists for corresponding functions.

Table A-1. AutolISP and ADS functions

AiotsErnaion. . T memnE

(+ number number ...)

(- number [number] ...)

(* number [number] ...)

(/ number [number] ...)

(= atom atom ...)

(/= atom atom ...)

(< atom atom ...)

(<= atom atom ...)

(> atom atom ...)

(>= atom atom «..)

(~ number)

(*error* string)

(1+ number)

(1- number)

(abs number)

(ads) ads_loaded()

(alloc number)

ads_abort (str)

(alert string) ads_alert (str)

(and expression ...)

(angle ptl pt2) ads_angle(ptl, pt2)

(angtof string [mode]) ads_angtof (str, unit, v)

AutolISP and ADS Functions 187

AutolISP and ADS Functions

Table A-1. AutolISP and ADS functions (continued)

AutoLISP function

ADS function

(angtos angle [mode [precision]])

ads_angtos(v, unit, prec, str)

(append expr ...)

(apply function list)

(ascii string)

(assoc item alist)

(atan numl [num2])

(atof string)

(atol string)

(atom item)

(atoms-family format [symlist])

(Boole func intl int2 ...)

(boundp atom)

ads_buildlist (rtype, [, argument] ...)

(car 1ist)

(edr list)

(caar list), (cadr 1ist),
(eddr Iist), (cadar list), etc.

(chr integer)

(close file-dese)

ads_cmd (rbp)

(command [args] ...)

ads_command (rtype, [, argument] ...)

(cond (testl resultl ...) ...)

(cons new-first-element 1ist)

(cos angle)

(cvunit value from to)

ads_cvunit(value, eoldunit, newunit,

result)

(defun sym argument-1ist expr ...

ads_defun(sname, funcno)

(distance ptl pt2)

ads_distance(ptl, pt2)

(distof string ([mode])

ade_distof (str, unit, w)

ads_draggen(ss, pmt, cursor,

scnf, p)

(entdel ename)

ads_entdel (ent)

(entget ename f[applist])

ads_entget (ent)

ads_entgetx(ent, apps)

(entlast)

ads_entlast (result)

88

Appendix A

Table A-1. AutolISP and ADS functions (continued)

 AutolISPfunction

(entmake [elist])

ads_entmake (ent)

(entmod elist)

ads_entmod (ent)

(entnext [ename])

ads_entnext (ent, result)

(entsel [prompt])

ads_entsel(str, entres, ptres)

(entupd ename)

ads_entupd(ent)

(eq exprl expr?z)

(equal exprl expr?2 [fuzz])

(eval expr)

(exit)

ads_exit(status)

(exp number)

(expand)

ads_ fail(str)

(expt base power)

(findfile filename)

ads_findfile(fname, result)

(fix number)

(float number)

(foreach name list expr ...)

(ge)

(ged numl num?2)

(getangle [pt] [prompt])

ads_getangle(point, prompt, result)

ads_getargs ()

(getcorner pt [prompt])

ads_getcorner(point, prompt, result)

(getdist [pt] [prompt])

ads_getdist (point, prompt, result)

(getenv variable-name)

(getfiled title filename ext flags)

ads_getfiled(title, default, ext,
flags, result)

ads_getfuncode ()

ads_getinput (str)

(getint [prompt])

ads_getint (prompt, result)

(getkword [prompt])

ads_getkword (prompt, result)

(getorient [pt] [prompt])

ads_getorient(point, prompt, result)

(getpoint [pt] [prompt])

ads_getpoint (point, prompt, result)

(getreal [prompt])

ads_getreal (prompt, result)

189

AutoLISP and ADS Functions

Table A-1. AutolISP and ADS functions (continued)

| ADSEneton .0

(getstring [cr] [prompt])

ads_getstring(cronly, prompt, result)

ads_getsym(sname, value)

(getvar varname)

ads_getvar (syvm, result)

(graphscr)

ads_graphscr()

(grclear)

ads_grclear()

(grdraw from to color [highlight])

ads_grdraw(from, to, coelor, hl)

(grread [track [allkeys [curtyvpel]l])

ads_grread(track, type, result)

(grtext [box text [highlight]])

ads_grtext (box, text, hl)

(grvecs viist [trans])

ads_grvecs(viist, mat)

(handent handie)

ads_handent (handle, entres)

(1f testexpr thenexpr [elseexpr])

ads_init(argc, argv)

(initget [bits] [string])

ads_initget(val, kwl)

(inters ptl pt2 pt3 ptd [onseqg]l)

ads_inters(froml, tol, from2, to2,
testeon, result)

ads_invoke(args, result)

ads_isalnum(c)

ads_isalpha(c)

ads_iscntrl (o)

ads_isdigit (o)

ads_isgraph(c)

ads_islower (c)

ads_isprint(c)

ads_ispunct (c)

ads_isspace(c)

ads_isupper (c¢)

ads_isxdigit (¢)

(itoa int)

(lambda arguments expr ...)

(last list)

(length Iist)

(list expr ...)

(listp item)

190

Appendix A

Table A-1. AutoLISP and ADS functions (continued)

(load filename [onfailure])

(log number)

(logand number number ...)

(logior integer ...)

(lsh numl numbits)

(mapcar function listl ... listn)

(max number number ...)

(mem)

(member expr list)

ads_link(chbce)

(menucmd string) ads_menucmd (str)

(min number number ...)

(minusp item)

(nentsel [prompt]) ads_mnentsel(str, entres, ptres,
xformres, refstkres)

(nentselp [prompt] [pt]) ads_nentselp(str, entres, ptres, flag,
xformres, refstkres)

ads_newrb(v)

(not item)

(nth n list)

(null item)

(numberp 1item)

(open filename mode)

(or expr ...)

(osnap pt mode-string) ads_osnap(pt, mode, result)
(polar pt angle distance) ads_polar(pt, angle, dist, ptres)
(prinl [expr (file-desc]]) ads_printf(format, [, argument] ...)

(princ [expr [file-desc]])

(print [expr [file-desc]])

(progn expr ...}

(prompt msg) ads_prompt (str)

ads_putsym(sname, value)

(quit)

(quote expr)

191

AutolISP and ADS Functions

Table A-1. AutolISP and ADS functions (continued)

PRt e

. (B

(read string)

(read-char (file-desc])

(read-line [file-desc])

(redraw [ename [mode]])

ads_redraw(ent, mode)

(regapp application)

ads_regapp (appname)

ads_regfunc(fhdl, fcode)

ads_relrb(rhb)

(rem numl num2 ...)

(repeat number expr ...)

ads_retint(ival)

ads_retlist (rburf)

ads_retname (aname, type)

ads_retnil ()

ads_retpoint (pt)

ads_retreal(ival)

ads_retstr(s)

ads rett ()

ads_retval (rbuf)

ads_retvoid()

(reverse list)

[filter-1list])

(rtos number [mode [precisiocn]]) ads_rtos(val, unit, prec, str)
(set sym expr)
(setq syml exprl [sym2 expr2] ...)
(setvar varname value) ads_setvar(sym, val)
(sin angle)
(sgrt number)
(ssadd [ename [ss]]) ads_ssadd (ename, sname, result)
(ssdel ename s55) ads_ssdel (ename, s3)
ads_ssfree (sname)
(ssget [mode] [ptl [pt2]] (pt-list] ads_ssget(str, ptl, pt2, entmask, ssg)

(sslength ss)

ads_sslength(sname, len)

(ssmemb ename ss)

ads_ssmemb (ename, £s5)

192

Table A-1. AutoLiSP and ADS functions (continued)

Appendix A

TAutolisP function

ADS function

(ssname ss index)

ads_ssname(ss, 1,

entres)

(strcase string [which])

(strcat Stringl [SEFing2] ..+)

(strlen [string] ...)

(subst newitem olditem 1list)

(substr string start [length])

(tablet code [coll col2 col3 direction])

ads_tablet(list,

result)

(tblnext table-name [rewind])

ads_tblnext (tblname,

rewind)

(tblsearch table-name symbol [setnext]) ads_tblsearch(tbliname, sym, setnext)
(terpri)
(textbox elist) ads_textbox(ent, pl, p2)
(textpage) ads_textpage()
(textscr) ads_textscr()
ads_tolower (¢)
ads_toupper(c)
(trace function ...)
(trans pt from to [disp]) ade_trans(pt, from, to, disp, result)
(type item)
(untrace function ...)
ads_undef (sname, funcno)
ads_usrbrk()
(ver)
(vports) ads_vports(resulit)
(wematch string pattern) ads_wcmatch(string, pattern)
(while testexpr expr ..:)
(write-char num [file-desc])
(write-line string [file-desc])
(xdroom ename) ads_xdroom(ent, result)
(xdsize Ilist) ads_xdsize(xd, result)
ads_xformss(ssname, genmat)

(xload application [onfailure])

ads_xload(app)

(xunload application [onfailure])

ads_xunload (app)

(zerop item)

193

Appendix B
DXF Group Codes

This appendix is a quick reference to the DXF group codes, which are described
in greater detail in chapter 11 of the AutoCAD Customization Manual. The first
section lists the group codes in numerical order. The second organizes them by
entity.

Important: The group codes encountered by an AutoLISP or ADS application
differ slightly from the group codes as they appear in a DXF file. This appendix
describes the codes from an application’s point of view.

Group Codes in Numerical Order

This table shows negative group codes, which don’t actually appear in a DXF
file but do appear to programs. It also omits some codes that don’t appear to
programs.

In the table, “(fixed)” indicates that this group code always has the same pur-
pose. The purpose of group codes that aren’t fixed can vary depending on con-
text.

Table B~1. Entity group codes by nurber

 Group code | Valuetype

—4 Conditional operator (used only with (ssget) and ads_ssget ()

-3 Extended entity data (XDATA) sentinel (fixed)

=2 Entity name reference (fixed)

-1 Entity name (changes each time drawing is opened; never saved);
(fixed)

0 Starts an entity. The type of entity is given by the text value that
follows this group (fixed)

1 The primary text value for an entity

2 A name: Attribute tag, Block name, and so on

3-4 Other textual or name values

5 Entity handle expressed as a hexadecimal string (fixed)

6 Line type name (fixed)

DXF Group Codes 195

DXF Group Codes

Table B-1. Entity group codes by number (continued)

Group code | Value type

Z Text style name (fixed)

8 Layer name (fixed)

10 Primary point (start point of a Line or Text entity, centre of a Circle,
etc.)

11-18 Other points
Note: These are the only coordinate group codes that an application
sees. The Y (20-28) and Z (30-38) coordinates that appear in a DXF
file are passed to an application as part of an AutoLISP point list or an
ADS result buffer

39 This entity’s thickness if nonzero (fixed)

40-48 Floating-point values (text height, scale factors, etc.)

49 Repeated value—multiple 49 groups may appear in one entity for
variable-length tables (such as the dash lengths in the LTYPE table). A
7x group always appears before the first 49 group to specify the table
length

50-58 Angles

62 Colour number (fixed)

66 “Entities follow” flag (fixed)

67 Space (that is, model or paper space)

70-78 Integer values such as repeat counts, flag bits, or modes

210 Extrusion direction (fixed)

Note: As with point coordinates, an application sees only the 210
group. The Y (220) and Z (230) components of an extrusion vector
are passed to an application as part of an AutoLISP point list or an
ADS result buffer

999 Comments

1000 An ASCII string (up to 255 bytes long) in XDATA

1001 Registered application name (ASCII string up to 31 bytes long) for
XDATA (fixed)

1002 XDATA control string (" { " or "} "); (fixed)

1003 Layer name in XDATA

1004 Chunk of bytes (up to 127 bytes long) in XDATA

1005 Entity handle in XDATA

1010 A point in XDATA

1011 A 3D World space position in XDATA

1012 A 3D World space displacement in XDATA

196

Group Codes in Numerical Order

Table B-1. Entity group codes by number (continued)

Appendix B

Group code | Value type

1013 A 3D World space direction in XDATA

result buffer

Note: Again, these are the only coordinate group codes that an
application sees. The Y (1020, 1021, 1022, or 1023) and Z (1030,
1031, 1032, or 1033) coordinates that appear in a DXF file are
passed to an application as part of an AutoLISP point list or an ADS

1040 Floating-point value in XDATA

1041 Distance value in XDATA

1042 Scale factor in XDATA

1070 16-bit integer in XDATA

1071 32-bit signed long integer in XDATA

Group Codes by Entity

The following table, B-2, shows group codes that apply to virtually all entities
(strictly speaking, handles don't appear in tables and group 210 applies only
to planar entities; optional codes are shown in gray). When you refer to table
B-3 and table B-4, which list the codes associated with an entity, don’t forget

that the codes shown here can also be present.

Table B-2. Group codes that apply to all entities

 Group Meaning If omitted
code defaults to . . .
-1 Entity name (changes each time drawing is opened) Not omitted
0 Entity type Not omitted
8 Layer name Not omitted
5 Handle (always present for entities and Block defini- Not omitted
tions)
6 Linetype name (present if not BYLAYER). The special BYLAYER
name BYBLOCK indicates a floating linetype
39 Thickness (present if nonzero) 0
62 Colour number (present if not BYLAYER). Zero indi- BYLAYER
cates the BYBLOCK (floating) colour. 256 indicates
BYLAYER
67 Absent or zero indicates entity is in model space. One 0
indicates entity is in paper space
Other entity-definition groups appear here
210 Extrusion direction (present if the entity’s extrusion (0,0,1)
direction is not parallel to the World Z axis)
This group applies to Line, Point, Circle, Shape, Text,
Arc, Trace, Solid, Block Reference (Insert), Polyline,
Dimension, Attribute, and Attribute Definition entities

G;oup Codésmg}; Entity

197

DXF Group Codes

Caution: Although these tables show the order of group codes as they usually
appear, it’s not a good idea to write programs that rely on this order, which can
change under certain conditions or in a future AutoCAD release. Code to han-
dle an entity should be driven by a case (switch) or a table, so it can process
each group correctly even if the order is unexpected.

Entity Group Codes

The following table, B-3, shows group codes for entities (as they would be
saved in the ENTITIES section of a DXF file; optional codes are shown in gray).
For the codes that apply to Block definitions and table entries, see “Block and
Table Group Codes” on page 203.

Table B-3. Entity group codes by entity

Entitytype | Group codes | Meming - - -
3DFACE 10 First corner
11 Second corner
12 Third corner
13 Fourth corner (if only three corners entered, this equals the
third corner)
70 Invisible edge flags (optional; default: 0):
1 First edge is invisible
2 Second edge is invisible
4 Third edge is invisible
8 Fourth edge is invisible
ATTDEF 10 Text start point
40 Text height
1 Default value (string)
3 Prompt string
2 Tag string
70 Attribute flags:
1 Attribute is invisible (does not display)
2 This is a constant Attribute
4 Verification is required on input of this Attribute
8 Attribute is preset (no prompt during insertion)
73 Field length (optional; default: 0)
50 Text rotation (optional; default: 0)
41 Relative X scale factor (optional; default: 1)
51 Oblique angle (optional; default: 0)
7 Text style name (optional; default: STANDARD)
71 Text-generation flags (optional; default: 0) see TEXT
72 Horiz. text justification type (optional; default: 0) see TEXT
74 Vertical text justification type (optional; default: 0) see TEXT

198

Group Codes by Entity

Appendix B

Table B-3. Entity group codes by entity (continued)
Entitytype | Groupcodes | Meaning .
A1.'I'.D.EF | 11 Alignment point (optional: pr.esent only if 72 or 74 group is
(continued) present and nonzero)
ATTRIB 10 Text start point
40 Text height
1 Value (string)
2 Attribute tag (string)
70 Attribute flags:
1 Attribute is invisible (does not display)
2 This is a constant Attribute
4 Verification is required on input of this Attribute
8 Attribute is preset (no prompt during insertion)
73 Field length (optional; default: 0)
50 Text rotation (optional; default: 0)
4] Relative X scale factor (optional; default: 1)
51 Oblique angle (optional; default: 0)
7 Text style name (optional; default: STANDARD)
71 Text-generation flags (optional; default: 0) see TEXT
72 Horiz. text justification type (optional; default: 0) see TEXT
74 Vertical text justification type (optional; default: 0) see TEXT
11 Alignment point (optional: present only if 72 or 74 group is
present and nonzero)
ARC 10 Centre
40 Radius
50 Start angle
51 End angle
CIRCLE 10 Centre point
40 Radius
DIMENSION 2 Name of pseudo-Block that contains the dimension picture
3 Dimension style name
10 Definition point
11 Middle point of dimension text
12 Insertion point for clones of a dimension (for Baseline and
Continue)

Group Codes by Entity . 199

DXF Group Codes

Table B-3. Entity group codes by entity (continued)

Entiytpe | Growpcodes | Meaning e
DIMENSION 70 Dimension type—these are integer codes, not bit-coded:
(continued) 0 Rotated, horizontal, or vertical

1 Aligned
2 Angular
3 Diameter
4 Radius
5 Angular 3 point
6 Ordinate
64 X-type ordinate at the default location
192 X-type ordinate at a user-defined location
1 Dimension text entered by the user (optional; default: the
measurement)
13 Definition point for linear and angular dimensions
14 Definition point for linear and angular dimensions
15 Definition point for diameter, radius, and angular
dimensions
16 Point defining dimension arc for angular dimensions
40 Leader length for radius and diameter dimensions
50 Angle of rotated, horizontal, or vertical linear dimensions
51 Horizontal direction (optional)
52 Extension line angle for oblique linear dimensions (optional)
53 Rotation angle of dimension text (optional)
INSERT 66 Attributes-follow flag (optional; default: 0)
2 Block name
10 Insertion point
41 X scale factor (optional; default: 1)
42 Y scale factor (optional; default: 1)
43 Z scale factor (optional; default: 1)
50 Rotation angle (optional; default: 0)
70 Column count (optional; default: 1)
| Row count (optional; default: 1)
44 Column spacing (optional; default: 0)
45 Row spacing (optional; default: 0)
LINE 10 Start point
11 End point

200

Group Codes by Entity

Appendix B

Table B-3. Entity group codes by entity (continued)

:'”Efnti_'ty type | Groupcodes | Meaning
: i
POINT 10 Point
50 Angle of X axis for the UCS in effect when the Point was

drawn (optional; defaulit: 0)
Used when PDMODE is nonzero

POLYLINE 66 Vertices-follow flag (always 1 for a Polyline)

10 A “dummy” point; the X and Y coordinates are always 0,
and the Z coordinate specifies the Polyline’s elevation

70 Polyllne flag (optional; default: 0):
This is a closed Polyline (or a polygon mesh closed
in the M direction)

2 Curve-fit vertices have been added

4 Spline-fit vertices have been added

8 This is a 3D Polyline

16 Thisis a 3D Polygon mesh

32 The polygon mesh is closed in the N direction

64 This Polyline is a polyface mesh

128 The linetype pattern is generated continuously
around the vertices of this Polyline

40 Default starting width (optional; default: 0)

41 Default ending width (optional; default: 0)

2 Polygon mesh M vertex count (optional; default: 0)

72 Polygon mesh N vertex count (optional; default: 0)

73 Smooth surface M density (optional; default: 0)

74 Smooth surface N density (optional; default: 0)

75 Curves and smooth surface type (optional; default: 0)—

these are integer codes, not bit-coded:
0 No smooth surface fitted
5 Quadratic B-spline surface
6 Cubic B-spline surface
8 Bezier surface

SEQEND -2 Name of entity that began the sequence
SHAPE 10 Insertion point
40 Size
2 Shape name
50 Rotation angle (optional; default: 0)
141 Relative X-scale factor (optional; default: 1)
51 Obligue angle (optional; default: 0)

Gré@p Codes by E}thty 201

DXF Group Codes

202

Table B-3. Entity group codes by entity (continued)
'E'ntity typ'e . Group codes . Meaning
SOLID 10 First corner
11 Second corner
12 Third corner
13 Fourth corner (if only three corners entered, this equals the
third corner)
TEXT 10 Insertion point
40 Height
1 Text value (the string itself)
50 Rotation angle (optional; default: 0)
41 Relative X-scale factor (optional; default: 0)
51 Oblique angle (optional; default: 0)
7 Text style name (optional; default: STANDARD)
71 Text generation flags (optional; default: 0):
2 Text is backward (mirrored in X)
4 Text is upside down (mirrored in V)
72 Horizontal alignment (optional; default: 0)—these are
integer codes, not bit-coded:
0 Left
1 Centre
2 Right
3 Aligned (if vertical alignment = 0)
4 Middle (if vertical alignment = 0)
5 Fit (if vertical alignment = 0)
73 Vertical alignment (optional; default: 0)—these are integer
codes, not bit-coded:
0 Baseline
1 Bottom
2 Middle
3 Top
11 Alignment point (optional: present only if 72 or 73 group is
present and nonzero)
TRACE 10 First corner
11 Second corner
12 Third corner
13 Fourth corner
VERTEX 10 Location
40 Starting width (optional; default: 0)
41 Ending width (optional; default: 0)
42 Bulge (optional; default: 0)

 Group Codes by Entity

Appendix B

Table B-3. Entity group codes by entity (continued)

CEniyope | Groupcodes | Meanng
VERTEX 70 Vertex flags (optional; default: 0):
(continued) 1 Extra vertex created by curve-fitting
2 Curve-fit tangent defined for this vertex. A curve-
fit tangent direction of 0 may be omitted from
the DXF output, but is significant if this bit is set
4 not used
8 Spline vertex created by spline-fitting
16 Spline frame control point
32 3D Polyline vertex
64 3D Polygon mexh vertex
128 Polyface mesh vertex
50 Curve fit tangent direction (optional)
VIEWPORT 10 Centre point
40 Width in paper space units
41 Height in paper space units
69 Viewport ID (changes each time drawing is opened; never
saved)
68 Viewport status field
1001 Application ID (*2CaD"). This begins a section of XDATA

that describes the Viewport. User applications can't modify
this data; see the AutoCAD Customization Manual for details

Block and Table Group Codes

The following table, B-4, shows the 70 group flag bit values that apply to all
table entries:

Table B-4. Group 70 bit codes that apply to all table entries

Flag bit value

| Meaning

16

If set, table entry is externally dependent on an Xref

32

If this bit and bit 16 are both set, the externally dependent Xref has
been successfully resolved

64

If set, the table entry was referenced by at least one entity in the
drawing the last time the drawing was edited. (This flag is for the
benefit of AutoCAD commands; it can be ignored by most
programs that read DXF files, and need not be set by programs
that write DXF files)

Group Codes by Entity 203

DXF Group Codes

The following table, B-5, shows the group codes for Block definitions and table
entries (as they would be saved in the TABLES and BLOCKS sections of a DXF
file; optional codes are shown in gray).

Table B-5. Block and table group codes by entity

 Entity type "'Grou'p"code_s Meaning e
APPID 2 User-registered application name (for XDATA)
70 Standard flag values
BLOCK Note: A Block description also contains the standard entity groups shown in

table B-2 except for the entity name (~1) group, which ads_tblnext () and
ads_tblsearch() do not return

2 Block name
70 Type flag:

1 This is an anonymous Block (generated by hatch-
ing, associative dimensioning, other internal oper-
ations, or an application)

2 This Block has Attributes

4 This Block is an external reference (Xref)

8 not used

16 This Block is externally dependent

32 This is a resolved external reference, or dependent
of an external reference

64 This definition is referenced

10 Base point
DIMSTYLE 2 Dimension style name

70 Standard flag values

3 DIMPOST

4 DIMAPOST

5 DIMBLK

6 DIMBLK1

7 DIMBLK2

40 DIMSCALE

41 DIMASZ

42 DIMEXO

43 DIMDLI

44 DIMEXE

45 DIMRND

46 DIMDLE

47 DIMTP

48 DIMTM

140 DIMTXT

141 DIMCEN

204 Group Codes by Entity

Appendix B

Table B-5. Block and table group codes by entity (continued)
 Entity type ‘Group codes | Meaning
DIMSTYLE 142 DIMTSZ
(continued) 143 DIMALTF
144 DIMLFAC
145 DIMTVP
146 DIMTFAC
147 DIMGAP
71 DIMTOL
72 DIMLIM
73 DIMTIH
74 DIMTOH
75 DIMSE1
76 DIMSE2
77 DIMTAD
78 DIMZIN
170 DIMALT
171 DIMALTD
172 DIMTOFL
173 DIMSAH
174 DIMTIX
175 DIMSOXD
176 DIMCLRD
177 DIMCLRE
178 DIMCLRT
ENDBLK (No groups) End Block definition (appears only in BLOCKS table)
LAYER 2 Layer name
70 Layer flags:
1 If set, layer is frozen
2 If set, layer is frozen by default in new Viewports
4 If set, layer is locked
62 Colour
6 Linetype

205

DXF Group Codes

Table B=5. Block and table group codes by entity (continued)

 Entiytype | Groupcodes | Meanng
i Al = EE i B S
LTYPE 2 Linetype name
70 Linetype flags
3 Descriptive text for linetype
72 Alignment code
73 Number of dash length items
40 Total pattern length
49 Dash length (optional: can be repeated)
STYLE 2 Style name
70 Style flags
40 Fixed text height
41 Width factor
50 Oblique angle
71 Text-generation flags:
2 Text is backward (mirrored in X)
4 Text is upside down (mirrored in Y)
42 Last height used
3 Primary font filename
4 Big-font filename (empty string if none)
ucs 2 UCS name
70 Standard flag values
10 Origin in WCS
11 X axis direction (in WCS)
12 Y axis direction (in WCS)
VIEW 2 View name
70 View flag:
1 If set, this View is a paper space view
40 Height
41 Width
10 Centre point (a 2D point)
11 View direction from target, in WCS
12 Target point, in WCS
42 Lens length
43 Front clipping plane
44 Back clipping plane

206 Group Codes by Entity

Appendix B

Table B-5. Block and table group codes by entity (continued)

Tivwe | Gowwds | W

VIE\.N. - 50 TWist angle o

(continued) 71 View mode

VPORT 1 Vport name (might not be unique: all Vports in the current

configuration are named *ACTIVE, and the first *ACTIVE
Vport in the table is the one currently displayed)

70 Standard flag values
10 Lower-left corner (a 2D point)
" Upper-right corner (a 2D point)
12 Centre (a 2D point)
13 Snap base point (a 2D point)
14 Snap spacing (X and Y)
15 Grid spacing (X and Y)
16 Direction from target point
1§74 Target point
40 Height
41 Aspect ratio
42 Lens length
43 Front clipping plane
44 Back clipping plane
50 Snap rotation angle
51 Twist angle
68 Status field
69 ID
71 View mode—same values as the VIEWMODE system variable
72 Circle zoom percent
73 Fast zoom setting
74 UCSICON setting
75 Snap on/off
76 Grid on/off
77 Snap style
78 Snap isopair

Group Codes by Entity 207

Appendix C

Error Codes

G

The table in this appendix shows the values of error codes generated by
AutoLISP. The AutoCAD system variable ERRNO is set to one of these values
when an AutoLISP function call causes an error that AutoCAD detects.
AutoLISP applications can inspect the current value of ERRNO with (getvar
Terrnot),

Note: The variable ERRNO is not always cleared to zero, so unless it is inspected
immediately after an AutoLISP function has reported an error, the error its
value indicates may be misleading. This variable is always cleared upon entry
to the drawing editor.

Caution: The possible values of ERRNO, and their meanings, may change in
future releases of AutoCAD.

Table C-1. On-line program error codes

Value Meaning AutoLISP Functions
1 Invalid symbol table name entmake
entmod
regapp
2 Invalid entity or selection set name Several functions®
(see note that
follows this table)
3 Exceeded maximum number of selection sets ssget
4 Invalid selection set ssget
5 Improper use of Block definition entity Several functions®
6 Improper use of Xref entity Several functions®
Vi Entity selection: pick failed entsel
nentsel
8 End of entity file entnext
entupd
9 End of Block definition file entnext
10 Failed to find last entity entlast
11 lllegal attempt to delete Viewport entity entdel
12 Operation not allowed during Pline (Not currently used)
13 Invalid handle handent

E},—or poyes ; R S 209

Error Codes

Table C-1. On-line program error codes (continued)

Value | Meaning AutoLISP Functions

14 Handles not enabled handent

15 Invalid arguments in coordinate transform request trans

16 Invalid space in coordinate transform request trans

17 Invalid use of deleted entity entmod
trans

18 Invalid table name tblnext
tblsearch

18 Invalid table function argument tblnext
tblsearch

20 Attempt to set a read-only variable setvar

21 Zero value not allowed setvar

22 Value out of range setvar

23 Complex REGEN in progress entmake
entmod
entupd

24 Attempt to change entity type entmake
entmod

25 Bad layer name entmake
entmod

26 Bad linetype name entmake
entmod

27 Bad color name entmake
entmod

28 Bad text style name entmake

29 Bad shape name entmake

30 Bad field for entity type entmake
entmod

31 Attempt to modify deleted entity entmod

32 Attempt to modify Seqend subentity entmod

33 Attempt to change handle entmod

34 Attempt to modify Viewport visibility entmake
entmod

35 Entity on locked layer entmake
entmod

36 Bad entity type entmake

37 Bad Pline entity entmake

38 Incomplete complex entity in Block entmake

39 Invalid Block name field (Not currently used)

210

Table C-1. On-line program error codes (continued)

Appendix C

 Value Meaning AutoLISP Functions
40 Duplicate Block flag fields entmake
41 Duplicate Block name fields entmake
42 Bad normal vector entmake
43 Missing Block name entmake
44 Missing Block flags entmake
45 Invalid anonymous Block entmake
46 Invalid Block definition entity entmake
47 Mandatory field missing entmake
48 Unrecognized extended data (XDATA) type entmake
entmod
49 Improper nesting of list in XDATA entmake
entmod
50 Improper location of APPID field entmake
entmod
51 Exceeded maximum XDATA size entmake
entmod
52 Entity selection: null response entsel
nentsel
53 Duplicate APPID entmake
entmod
54 Attempt to make or modify Viewport entity entmake
entmod
55 Attempt to make or modify an Xref, Xdef, or Xdep entmake
entmod
56 ssget filter: unexpected end of list ssget
57 ssget filter: missing test operand ssget
58 ssget filter: invalid opcode (-4) string ssget
59 ssget filter: improper nesting or empty condi- ssget
tional clause
60 ssget filter: mismatched begin and end of condi- ssget
tional clause
61 ssget filter: wrong number of arguments in con- ssget
ditional clause (for NOT or X0OR)
62 ssget filter: exceeded maximum nesting limit ssget
63 ssget filter: invalid group code ssget
64 ssget filter: invalid string test ssget
65 ssget filter: invalid vector test ssget

211

Error Codes

Table C-1. On-line program error codes (continued)

Value | Meaning | | AutoLISP Functions
66 | ssget f.ilter: invalid real iest ssg.et |
67 ssget filter: invalid integer test ssget
68 Digitizer isn’t a tablet tablet
69 Tablet is not calibrated tablet
70 Invalid arguments tablet
71 ADS error: Unable to allocate new result buffer
72 ADS error: Null pointer detected
73 Can’t open executable file xload
74 Application is already loaded xload
75 Maximum number of applications already loaded xload
76 Unable to execute application xload
77 Incompatible version number xload
78 Unable to unlead nested application xunload
79 Application refused to unload xunload
80 Application is not currently loaded xunload
81 Not enough memory to load application xload
82 ADS error: Invalid transformation matrix
83 ADS error: Invalid symbol name
84 ADS error: Invalid symbol value
85 AutoLISP/ADS operation attempted and prohib-

ited while a dialogue box was displayed.

a. The error codes 2,5,and 6 can be reported by several functions, including entdel,
entget, entmod, entnext, entupd, redraw, regapp, ssadd, ssdel, ssmemb ,trans,
and xdroom.

212

Appendix D

Error Messages

When AutoLISP detects an error condition, it cancels the function in progress
and calls the user *error* function with a message indicating the type of
error. If no user *error* function is defined (or if *error* is bound to nil),
the standard error action is to display the message in this form:

error. message

followed by a function traceback. If a user-defined *error* function exists, it
calls that function with message passed as the only argument.

User Program Errors

The following is a list of error messages you see from time to time while writing
and debugging AutoLISP functions. Most of these messages indicate typical
LISP programming errors, such as these:

e misspelled function or symbol names

e the wrong type or number of function arguments
¢ mismatched parentheses

e mismatched quotes (unterminated strings)

» failure to check for proper completion of a function before attempting to
use its result

Although these messages usually indicate user programming errors, they may
also arise due to programming errors (bugs) in AutoLISP itself. If you can't see
anything wrong with your program, please fill out a Bug Report and send it to
Autodesk.

arguments of a defun can’t have the same name

A function defined with multiple arguments of the same name will fail with
this message.

AutoCAD rejected function

The arguments passed to an AutoCAD function were invalid (as in setvar of
a read-only system variable, or tblnext with an invalid table name), or the
function itself is invalid in the current context. For instance, you cannot use a
getxxx user input function inside the command function.

Error Messages 2 13

Error Messages

AutoLISP stack overflow

The AutoLISP stack storage space has been exceeded. This can be due to exces-
sive function recursion or very large function argument lists.

bad argument type

A function was passed an incorrect type of argument. (For instance, you can’t
take the strlen of an integer.)

bad association list

The list supplied to the assoc function does not consist of (key value) lists.

bad conversion code

This indicates that an invalid space identifier was passed to the trans func-
tion.

bad ENTMOD list

The argument passed to entmod is not a proper entity data list (as returned by
entget).

bad ENTMOD list value

One of the sublists in the association list passed to entmod contains an
improper value.

bad formal argument list

When evaluating this function, AutoLISP detected an invalid formal argument
list. Perhaps the function is not a function at all, but rather a data list.

bad function

The first element in the list is not a valid function name. Perhaps it is a variable
name or a number. This message can also indicate that the named function is
improperly defined—don’t forget the required formal argument list.

bad function code

This indicates that a bad function identifier was passed to the tablet
command.

bad grvecs list value
Something passed in a grvecs list isn’t a 2D or 3D point.

bad grvecs matrix value

A matrix passed to grvecs is malformed, or contains the wrong data type
(e.g., STR, syu, etc.).

214 User Program Errors

Appendix D

bad list

An improperly formed list was passed to a function. This can occur if a real
number begins with a decimal point. You must use a leading zero in such a
case.

bad list of points

Used by ssget if a null list or a list containing items other than points is sent
along with a F, CP, or WP request. Also used by grvecs .

bad node

Invalid item type encountered by type function.

bad node type in list

Invalid item type encountered by foreach function.
bad point argument
bad point value

A poorly defined point (list of two reals) was passed to a function expecting a
point. Be careful not to begin a real number with a decimal point; you must
use a leading zero in such a case.

bad real number detected

An attempt was made to pass an invalid real number from AutoLISP to
AutoCAD.

bad ssget list

The argument passed to (ssget "X") is not a proper entity data list (as returned
by entget).

bad ssget list value

One of the sublists in the association list passed to (ssget "X") contains an
improper value.

bad ssget mode string

This error is caused when ssget is passed an invalid string in the mode argu-
ment.

bad xdata list

This error is caused when xdsize, ssget, entmod, entmake, Or textbox are
passed a malformed extended entity data list.

base point is required

The getcorner function was called without the required base point argu-
ment.

User Program Errors ZWIE

Error Messages

Boole argl 0 or 15

The first argument to the Boole function must be an integer between 0 and 15.

can’t evaluate expression

This error can be caused by improper placement of a decimal point and other
poorly formed expressions.

can’t open (file) for input -- LOAD failed

The file named in the load function could not be found, or the user does not
have read access to the file.

can’t reenter AutoLISP

The AutoCAD/AutoLISP communication buffer is in use by an active function;
no new function can be called until the active one is complete.

console break

The user entered (Ctri)+(C) while a function was processing.
divide by zero

Division by zero is not allowed.
divide overflow

Division by a very small value has resulted in an invalid quotient.
exceeded maximum string length

A string passed to a function is greater than 132 characters.
extra right paren

One extra right parenthesis or more was encountered.
file not open

The file descriptor for the I/O operation is not that of an open file.

file read—insufficient string space

String space was exhausted while reading from a file. See “Memory Manage-
ment” on page 177.

file size limit exceeded
A file has exceeded the operating system’s file size limit.
floating-point exception

(UNIX-based systems only.) The operating system has detected an error in
floating-point arithmetic.

216 User Program Errors

Appendix D

function cancelled

The user entered (Ctr]+(C] in response to an input prompt.

function undefined for argument

The argument passed to log or sqrt is out of range.

function undefined for real

A real number was passed as an argument to a function requiring an integer.
For instance: (1sh val 1.2).

grvecs missing endpoint

The vector list passed to grvecs is missing an endpoint.

illegal type in left

Means that the LSP file is not pure ASCII, but was saved by a word processing
program and the file includes fomatting codes.

improper argument
Argument to ged is negative or zero.

inappropriate object in function

An improperly constructed function has been detected by the vmon function
pager.

incorrect number of arguments

The quote function expects exactly one argument, but some other number of
arguments were supplied.

incorrect number of arguments to a function

The number of arguments to the user-defined function does not match the
number of formal arguments specified in the Defun.

incorrect request for command list data

A command function was encountered but cannot be executed due to another
active function.

input aborted

An error or premature end-of-file condition has been detected, causing termi-
nation of the file input.

insufficient node space

There is not enough heap space to accommodate the requested action. See
“Memory Management” on page 177.

User Program Erfors 217

Error Messages

insufficient string space

There is not enough heap space to accommodate the specified text string. See
“Memory Management” on page 177.

invalid argument

Improper argument type, or argument out of range.

invalid argument list

A corrupted argument list was passed to a function.

invalid character

An expression contains an improper character.

invalid dotted pair

Dotted pairs are lists containing two elements separated by a space-period-space
construction. You might get this error message if you begin a real number with
a decimal point; you must use a leading zero in such a case.

invalid integer value

A number smaller than the smallest integer, or larger than the largest integer,
was encountered.

LISPSTACK overflow

The AutoLISP stack storage space has been exceeded. This can be due to exces-
sive function recursion or very large function argument lists.

malformed list
A list being read from a file has ended prematurely. The most common cause

is a mismatch in the pairings of opening and closing parenthesis or quotation
marks.

malformed string
A string being read from a file has ended prematurely.
misplaced dot

This can occur if a real number begins with a decimal point; you must use a
leading zero in such a case.

null function

An attempt was made to evaluate a function that has a nil definition.

quit/exit abort

This is the result of a call to the quit or exit function.

218

Appendix D

string too long

A string passed to setvar is too long.

too few arguments

Too few arguments were passed to a built-in function.

too few arguments to grvecs

Not enough arguments were passed to grvecs.

too many arguments

Too many arguments were passed to a built-in function.

Internal Errors

You should rarely, if ever, encounter the following error messages. They tend
to indicate internal errors in the AutoLISP program itself, and you should
report them to Autodesk on a Bug Report form.

bad argument to system call

(UNIX-based systems only.) The operating system has detected a bad system
call generated by AutoLISP.

bus error

(UNIX-based systems only.) The operating system has detected a bus error.

hangup

(UNIX-based systems only.) The operating system has detected a hangup sig-
nal.

illegal instruction

(UNIX-based systems only.) The operating system has detected an invalid
machine instruction.

segmentation violation

(UNIX-based systems only.) The operating system has detected an attempt to
address outside this process’s memory area.

unexpected signal nnn

(UNIX-based systems only.) An unexpected signal was received from the oper-
ating system.

Internal Errors - 21 9

Appendix E

Tutorial

The Goal

One of the most powerful capabilities for extending AutoCAD is the AutoLISP
language. This facility, provided with AutoCAD, is an implementation of the
LISP programming language coupled to AutoCAD. By writing programs in
AutoLISP, you can add commands to AutoCAD and modify AutoCAD much
like our own software developers.

This tutorial shows you how to add a new command to AutoCAD. It explains
how AutoLISP works and shows you how to put its power to work for you. The
command you're going to develop is oriented to landscape architecture, but
the concepts you'll learn are relevant regardless of your application area.

We assume that you're a reasonably proficient AutoCAD user—that is, you
know the AutoCAD commands and the general concepts of AutoCAD. We also
assume you have access to a text editor that can construct ASCII files. You'll
be writing a program here—use your text editor to do what the tutorial asks.

You will use numerous AutoLISP functions in this tutorial; chapter 4 of this
manual contains a complete explanation of all of these functions.

Our goal is to develop a new command for AutoCAD that draws a garden path
and fills it with circular concrete tiles. Your new command will have the
prompt sequence:

Command: path

Start point of path: Locate the start point.
Endpoint of path: Locate the endpoint.
Half width of path: Enter a number.
Radius of tiles: Enter a number.

Spacing between tiles: Enfer a number.

You enter the start point and endpoint to specify the centre line of a path. Next,
you enter the half width of the path and the radius of the circular tiles. Finally,
you enter the spacing between the tiles. You are specifying the half width of
the path rather than the full width because it is easier to visualize the half
width with the line that rubber bands from the start point.

Tutorial

221

Tutorial

Getting Started

You'll develop this application as most are done, from the inside out (or bot-
tom up). You'll be making heavy use of angles in this application. AutoLISP,
like many programming languages, specifies angles in radians. Radians mea-
sure angles from zero to 2 * ©t (PI). Since most users think of angles in terms of
degrees, you'll define a function that converts degrees to radians. Using your
text editor, create a file called gp.Isp. Enter the following program:

; Convert angle in degrees to radians

(defun dtr (a)
{(* pi (/ a 180.0))
)

Now consider what this does. You’re defining a function using the defun
function in AutoLISP. The function is called dtr (short for degrees to radians).
It takes one argument, a, the angle in degrees. Its result is this expression:

wi* s 4 480 0)

It is expressed in LISP notation that you can read as the product of PI multiplied
by the quotient of 4 divided by 180.0. n is predefined by AutoLISP as 3.14159....
The line beginning with a semicolon is a comment—AutoLISP ignores all text
on a line after a semicolon.

Save the file to disk, and then bring up AutoCAD on a new drawing (the name
doesn’t matter as we won't be saving the drawing). When the AutoCAD
Command: prompt appears, load the function by entering

Command: (load "gp")

AutoLISP loads your function, echoing its name DTR (it is assumed that gp.lsp
is in the AutoCAD search path). From now on in this document when we say
bring up AutoCAD and load the program, we mean the sequence just described.

Now you'll test the function by executing it with various values. From the def-
inition of radians above, zero degrees should equal zero radians, so enter this:

Command: (dtr 0)

Entering a line that begins with a left parenthesis makes AutoCAD pass the
line to AutoLISP for evaluation. In this case, we are evaluating the dtr func-
tion we just defined and passing it an argument of zero. After evaluating the
function, AutoCAD prints the result, so this input should generate this reply:

0.0

Now try 180 degrees. If you enter
Command: (dtr 180)

you see this response:
3.14159

This indicates that 180 degrees is equal to © radians. If you examine the func-
tion, you see that this is how we defined it.

At this point you should QUIT AutoCAD and return to your text editor.

222

Getting Started

Appendix E
Getting Input

The “garden path” command will ask the user where to draw the path, how
wide to make it, how large the concrete tiles are, and how closely to space
them. You'll define a function that asks the user for all of these items and then
computes various numbers to use in the rest of the command.

Using your text editor, add the following lines to gp.Isp (a vertical bar is shown
in this manual to indicate the lines you add).

Note: If you are working on a DOS computer, you can use the SHELL command
to escape to the operating system from the AutoCAD drawing, thereby letting
you use your word processor to edit the file without exiting AutoCAD.

; Convert angle in degrees to radians
(defun dtr (a)

(¥ o4 & 180.0))
; Acquire information for garden path
(defun gpuser ()

(setg sp (getpoint "\nStart point of path: "))
setg ep (getpoint "\nEndpoint of path: "))

(

(setg hwidth (getdist "\nHalf width of path: " sp))
(setg trad (getdist "\nRadius of tiles: " sp))

(setg tspac (getdist "\nSpacing between tiles: " sp))

(setg pangle (angle sp ep))

{setg plength (distance sp ep))

(setg width (* 2 hwidth))

(setg angp90 (+ pangle (dtr 90))) ; Path angle + 90 deg
(getqg angm90 (- pangle (dtr 20))) ; Path angle - 90 deg

It isn't necessary to indent the expressions that constitute your functions. In
fact, you can enter the whole program on one line if you like. However, inden-
tion and line breaks make the structure of the program clearer and more read-
able. Also, lining up the starting and ending parentheses of major expressions
helps to ensure that your parentheses balance properly. We recommend that
you use spaces instead of tabs to indent lines. This ensures that the indenta-
tion remains consistent between edit sessions and word processors.

Here you've defined a function called gpuser. It takes no arguments and asks
the user for all of the desired items. The setq function sets an AutoLISP vari-
able to a specific value. The first setq sets variable sp (start point) to the result
of the getpoint function. The getpoint function obtains a point from the
user. The string specifies the prompt AutoCAD uses to obtain the point. The
\n causes the prompt to appear on a new line. We use the getdist function
to obtain the half width of the path, the tile radius, and the spacing between
the tiles. The second argument to the getdist function, sp, specifies the base
point for the distance. This makes the distance, if specified by a point in
AutoCAD, relative to the starting point of the path, and attaches a rubber-
band line to that point.

Getting Input 223

Tutorial

After the input is obtained from the user, several commonly used variables are
computed. The pangle variable is set to the angle from the start point to the
endpoint of the path. The angle function returns this angle given two points.
The plength variable is set to the length of the path. The distance function
calculates a distance given two points. Since you specified the half width of the
path, you calculate the width as twice this. Finally, you calculate and save the
angle of the path plus and minus 90 degrees in angp90 and angm90 respec-
tively (since angles within AutoLISP are in radians, you used the dtr function
to convert degrees to radians before these calculations).

The following illustration shows how the variables obtained by gpuser spec-
ify the geometry of the path.

Values obtained
by (gpuser)

PANGLE
SP

TRAD
ﬁsmc

Save this updated program to disk, and bring up AutoCAD and load the pro-
gram. You now will test this input function and make sure it is working prop-
erly. Activate the function by entering

Command: (gpuser)
Respond to the prompts as follows:

Start point of path: 80,80
Endpoint of path: 300,250
Half width of path: 60
Radius of tiles: 6

Spacing between tiles: 3

The gpuser function uses your replies to compute the additional variables it
needs and displays the result of its last computation (in this case, —0.912908,
the value of angm90 in radians). You can dump out all the variables set by the
gpuser function by entering their names preceded by an exclamation point

224

Getting Input

Appendix E

(). This causes AutoCAD to evaluate the variable and print the result. If you
enter the following commands, you should receive the indicated results:

Command: !sp

(80.0 80.0 0.0)
Command: lep
(300.0 250.0 0.0)
Command: thwidth
60.0

Command: lwidth
120.0

Command: 'trad
6.0

Command: !tspac
3.0

Command: !pangle
0.657889
Command: !plength
278.029

Command: !langp90
2.22868

Command: langm90
-0.912908

The sp and ep variables are returned as 3D points (X, Y, and Z); ignore the Z
component in this exercise.

Also, pangle, angp90, and angm90 are represented in radians. After verifying

these values, quit AutoCAD and return to your text editor on gp.Isp.

Getting Oriented

Now that you've asked the user for the location of the path, you can draw its
outline. Add the lines indicated with the character “I” to your gp.lsp file.

; Convert angle in degrees to radians

(defun dtr (a)

(* pi
)

(/ a 180.0))

; Acquire information for garden path

(defun gpuser ()

(setqg
(setqg
(setg
(setqg
(setg

(setg
(setqg

sp (getpoint "\nStart point of path: "))

ep (getpoint "\nEndpoint of path: "))

hwidth (getdist "\nHalf width of path: " sp))
trad (getdist "\nRadius of tiles: " sp))

tspac (getdist "\nSpacing between tiles: " sp))

pangle (angle sp ep))
plength (distance sp ep))

Getting Oriented

225

Tutorial

(setg width (* 2 hwidth))
(setqg angp90 (+ pangle (dtr 90))) ; Path angle + 90 deg
(setqg angm90 (- pangle (dtr 90))) ; Path angle - 90 deg

; Draw outline of path

(defun drawout ()
(command "pline"
(setg p (polar sp angm90 hwidth))
(setg p (polar p pangle plength))
(setg p (polar p angp90 width))
(polar p (+ pangle (dtr 180)) plength)
"cloge"

This addition defines a function called drawout. This function uses the start-
ing point, angle, and length of the path obtained by the gpuser function, and
draws the outline of the path as a Polyline. The drawout function uses the
command function to submit commands and data to AutoCAD. The command
function is how AutoLISP functions submit commands to be executed by
AutoCAD. The command function takes any number of arguments and submits
each to AutoCAD. In this case, you feed the command PLINE to AutoCAD, acti-
vating its Polyline command and then supply the four corners of the path.
Each corner is developed using the polar function, and stored in the tempo-
rary variable p. The polar function takes a point as its first argument and an
angle and distance supplied by its second and third arguments and returns a
point the specified distance and angle from the original point. In this case you
calculate the four points bounding the path geometrically from the start point
of the path. You complete the command by sending the string close to the
PLINE command, which causes it to draw the fourth side of the path and return
to the AutoCAD Command: prompt.

To test this function, save the updated gp.lsp, bring up AutoCAD on a new
drawing, and load the AutoLISP file as before. Activate the user input function
as before:

Command: (gpuser)

and supply the values as in the last step. Then test the new drawout function
by invoking it:

Command: (drawout)
Your function supplies the commands to AutoCAD to draw the border for the

path, and the border appears on the screen. After testing the function, quit
AutoCAD.

Drawing the Tiles

Now that you've developed and tested the user input function and the func-
tion that draws the border, you're ready to fill the path with the circular tiles.
This requires some geometry. Bring up your text editor and add the indicated
new functions to your program:

226

Drawing the Tiles

Appendix E

; Convert angle in degrees to radians

(defun dtr (a)
(* pi (/ a 180.0))
)

; Acquire information for garden path

(defun gpuser ()
(setg sp (getpeint "\nStart point of path: "))
(setg ep (getpeint "\nEndpeint of path: "))
(setg hwidth (getdist "\nHalf width of path: " sp))
(setg trad (getdist "\riRadius of tiles: " sp))
(setqg tspac (getdist "\nSpacing between tiles: " sp))

(setqg pangle (angle sp ep))

(setqg plength (distance sp ep))

(et wideh (% 2 hwddbh))

(setqg angp90 (+ pangle (dtr 90))) ; Path angle + 90 deg
(setg angm90 (- pangle (dtr 90))) ; Path angle - 90 deg

; Draw outline of path

(defun drawout ()
(command "pline"
(setg p (polar sp angm90 hwidth))
(setg p (polar p pangle plength))
(setg p (polar p angp90 width))
(polar p (+ pangle (dtr 180)) plength)
"close"

; Place one row of tiles given distance along path
; and possibly offset it

(defun drow (pd offset)

(setqg pfirst (polar sp pangle pd))

(setg pctile (polar pfirst angp90 offset))

(setg pltile pctile)

(while (< (distance pfirst pltile) (- hwidth trad))
(command "cirecle" pltile trad)
(setqg pltile (polar pltile angp90 (+ tspac trad trad)))

)

(setqg pltile (polar pctile angm90 (+ tspac trad trad)))

(while (< (distance pfirst pltile) (- hwidth trad))
(command "circle" pltile trad)
(setq pltile (polar pltile angm90 (+ tspac trad trad)))

Drawing the Tiles 227

Tutorial

7

Draw the rows of tiles

(defun drawtiles ()

(setg pdist (+ trad tspac))
(setg off 0.0)
(while (<= pdist (- plength trad))

(drow pdist off)
(setg pdist (+ pdist (* (+ tspac trad trad) (sin (dtr €0)))))
[1F (= @ff 0.0

(setg off (* (+ tspac trad trad) (cos (dtr 60))))

(setg off 0.0)

~

To understand how these functions work, refer to the following illustration.
The function drow draws a row of tiles at a given distance along the path spec-
ified by its first argument, offsetting the row perpendicular to the path by a
distance given by its second argument. You want to offset the tiles on alternate
rows to cover more space with the tiles and to make a more pleasing arrange-
ment.

Q Inter—line spacing O

geometry

The drow function finds the location for the first tile in the row by using
polar to move along the path by the distance given by the first argument, and
then polar again to move perpendicular to the path for the offset. It then uses
the while function to continue to draw circles until the edge of the path is
encountered. The setq at the end of the while loop moves on to the next tile
location by spacing a distance of two tile radii and one intertile spacing.

A second while loop then draws the tiles in the row in the other direction
until the other edge of the path is encountered.

The drawtiles function calls drow repeatedly to draw all the rows of tiles. Its
while loop steps along the path calling drow for each row. Tiles in adjacent
rows form equilateral triangles as shown in the illustration. The edges of these
triangles are equal to twice the tile radius plus the spacing between the tiles.

228

Drawing the Tiles

Appendix E

Therefore, by trigonometry, the distance along the path between rows is the
sine of 60 degrees multiplied by this quantity, and the offset for odd rows is
the cosine of 60 degrees multiplied by this quantity.

The if function is used in drawtiles to offset every other row. The if func-
tion tests its first argument and executes the second argument if it is true and
the third argument otherwise. In this case, if oFF is equal to zero, set it to the
spacing between centres of tiles multiplied by the cosine of 60 degrees as
explained above. If orF is nonzero, we set it to zero. This alternates the offset
on the rows as we want.

To test this function, save the file, and then bring up AutoCAD and load the
program. Enter

Command: (gpuser)

and supply the path information as before. Enter
Command: (drawout)

and the outline should be drawn as before. Finally, enter
Command: (drawtiles)

and all of the tiles should be drawn within the border.

Adding the Command to AutoCAD

Finally, you're ready to combine the pieces into an AutoCAD command. If you
define a function in AutoLISP with the name C: XXX, entering XxXx (assuming
that xxxis not an AutoCAD command), invokes the function. To finish imple-
menting the Path command, define a function c:PATH, which lets you enter
path after loading gp.Isp to execute the garden path command.

Use your text editor to add the indicated lines to gp.Isp, and then bring up
AutoCAD and load the program.

; Convert angle in degrees to radians
(defun dtr (a)

(% pi (-8 180 &))
; Acqulre information for garden path
(defun gpuser ()

(setg sp (getpoint "\nStart point of path: "))
setqg ep {(getpoint "\nEndpoint of path: "))

{

(setg hwidth (getdist "\nHalf width of path: " sp))
(setg trad (getdist "\nRadius of tiles: " sp))

(setqg tspac (getdist "\nSpacing between tiles: " sp))

(setg pangle (angle sp ep))

(setqg plength (distance sp ep))

(setg width (* 2 hwidth))

(setg angp90 (+ pangle (dtr 90))) ; Path angle + 90 deg
(setqg angm90 (- pangle (dtr 90))) ; Path angle - 90 deg

Adding the Command to AutoCAD 229

Tutorial

i Draw outline of path

(defun drawout ()
(command "pline"
(setg p (polar sp angm90 hwidth))
(setg p (polar p pangle plength))
(setq p (polar p angp90 width))
(polar p (+ pangle (dtr 180)) plength)
"close"

;i Place one row of tiles given distance along path
; and possibly offset it

(defun drow (pd offset)

(setg pfirst (polar sp pangle pd))

(setg pctile (polar pfirst angp90 offset))

(setg pltile pctile)

(while (< (distance pfirst pltile) (- hwidth trad))
(command "circle" pltile trad)
(setqg pltile (polar pltile angp90 (+ tspac trad trad)))

)

(setg pltile (polar pctile angm90 (+ tspac trad trad)))

(while (< (distance pfirst pltile) (- hwidth trad))
(command "circle" pltile trad)
(setg pltile (polar pltile angm90 (+ tspac trad trad)))

i Draw the rows of tiles

(defun drawtiles ()
(setg pdist (+ trad tspac))
(setg off 0.0)
(while (<= pdist (- plength trad))
(drow pdist off)

(setg pdist (+ pdist (* (+ tspac trad trad) (sin (dtr 60)))))

(if (= off 0.0}
(setg off (* (+ Lspac trad trad) (cos (dtr 60))1))
(setg off 0.0)

i Execute command, calling constituent functions

(defun C:PATH ()
(gpuser)
(drawout)
(drawtiles)

230 Adding the Command to AutoCAD

Appendix E

By adding a function called c:PATH we’ve added a PATH command to
AutoCAD. You can test the command by entering

Command: path

Start point of path: 80,80
Endpoint of path: 300,250
Half width of path: 60
Radius of tiles: 6

Spacing between tiles: 3

This should draw a garden path as shown in the following figure.

Finishing Up

As the PATH command executes, all the commands it submits to AutoCAD are
echoed to the command/prompt area, and all the points it selects are flagged
on the screen with small crosses (blips). Once a command function is
debugged, you can turn off this output to make the AutoLISP-implemented
command appear exactly like an AutoCAD command. Add the lines indicated
with the character “|” to gp.Isp to suppress command echoing and blips.

Finishing Up 231

Tutorial

; Convert angle in degrees to radians

(defun dtr (a)
(* pi (4 & 180.0))

; Acquire information for garden path
(defun gpuser ()

(setqg sp (getpoint "\nStart point of path: "))
setg ep (getpoint "\nEndpoint of path: ™))

(

(setg hwidth (getdist "\nHalf width of path: " sp))
(setqg trad (getdist "\nRadius of tiles: " sp))

(setg tspac (getdist "\nSpacing between tiles: " sp))

(setqg pangle (angle sp ep))

(setg plength (distance sp ep))

(setg width (* 2 hwidth))

(setg angp90 (+ pangle (dtr 90))) ; Path angle + 90 deg
(setg angm90 (- pangle (dtr 90))) ; Path angle - 90 deg

; Draw outline of path

(defun drawout ()
(command "pline"
(setg p (polar sp angm%0 hwidth))
(setg p (polar p pangle plength))
(setg p (polar p angp90 width))
(polar p (+ pangle (dtr 180)) plength)
"close"

; Place one row of tiles given distance along path
; and possibly offset it

(defun drow (pd offset)

(setg pfirst (polar sp pangle pd))

(setg pctile (pelar pfirst angp90 offset))

(setqg pltile pctile)

(while (< (distance pfirst pltile) (- hwidth trad))
(command "circle" pltile trad)
(setg pltile (polar pltile angp90 (+ tspac trad trad)))

)

(setg pltile (polar pctile angm®0 (+ tspac trad trad)))

(while (< (distance pfirst pltile) (- hwidth trad))
(cofiffiand. "gircle™ pltile trad)
(setg pltile (polar pltile angm90 (+ tspac trad trad)))

232 Finishing Up

Appendix E

: Draw the rows of tiles

(defun drawtiles ()
(setg pdist (+ trad tspac))
(setg off 0.0)
(while (<= pdist (- plength trad))
{(drow pdist off)
(setg pdist (+ pdist (* (+ tspac trad trad) (sin (dtr 60)))))
(2 (= st 0.8)
(getg off (* (+ tgpac trad trad) (cos (dtr 60))))
(setg off 0.0)

; Execute command, calling constituent functions

(defun C:PATH ()
(gpuser)
(setg sblip (getvar "blipmode"))
(setg scmde (getvar "cmdecho"))
(getvar "blipmode" 0)

(setvar "cmdecho" 0)
(drawout)
(drawtiles)
(setvar "blipmode" sblip)
(setvar "cmdecho" scmde)

{(princ)

You use the getvar function to obtain the current values of the AutoCAD sys-
tem variables BLIPMODE and CMDECHO. These are saved via setq in sklip
and scmde. Then use the setvar function to set both of these AutoCAD vari-
ables to zero, disabling blips and command echoing. You set these variables to
zero after obtaining the input from the user via gpuser. You want the blips to
be left on to confirm the user input.

After drawing the path, use the setvar function to restore both of these vari-
ables to their original values.

Adding a final call to the princ function lets the ¢: PATH function exit quietly.
AutoLISP functions always return the value of the last function call; in this
case, a 1 or 0 is returned if the final call to princ is omitted.

Save the file, bring up AutoCAD and try the PATH command now. Play around
with it, specifying the various inputs from the pointer as well as the keyboard.

Adding a Dialogue Box Interface

The Dialogue Control Language (DCL) lets you add user definable dialogue
boxes to your AutoLISP programs.

Your new PATH command accepts its input at the command line. You can eas-
ily add a dialogue box interface to this command by using the dialogue box
functions described in the section “Programmable Dialogue Box Functions”

Adding a Dialogue Box Interface 233

Tutorial

on page 85 and by creating a .dcl file that contains the DCL description of the
dialogue box. The AutoLISP dialogue box functions and DCL are described
fully in chapter 9 of the AutoCAD Customization Manual.

Dialogue boxes are very useful for letting users choose between a number of
options, define sizes, and specify amounts before making the final decision to
execute a command. Currently this program has very few options which
would make for a boring dialogue box; we will take this opportunity to add a
few more features.

A new feature we will add to the ¢ : PATH function will let you specify the shape
of the tiles in the path. We will also add an error handling function.

You should start by copying the finished version of gp.Isp to another file,
ddgp.Isp (most of the dialogue box interface AutoLISP programs supplied with
AutoCAD are named with this ddxxx.Isp format). We will also be creating a
new ASCII file ddgp.dcl that contains the DCL description of the dialogue box.

The DCL File—ddgp.dcl

The dialogue box you create will contain two radio buttons (if you select one,
the other is deselected ... you know, like on a car radio) for choosing the tile
shape: circle or polygon. It will also contain three edit boxes for entering the
numeric values: radius of the tile, spacing between the tiles, and the number
of sides (which is only available if the radio button Polygon is selected).

Without explaining in great detail the mechanics of DCL and the associated
AutoLISP functions, we will outline the steps required to add a simple dialogue
box to the c: PATH function. The following code should be placed in the file
ddgp.dcl; this is the DCL file.

/* DDGP.DCL - DCL file for DDGP.LSP */

gp_boxl : dialog {

label = "Garden Path Tile Specificationg":
boxed_radio_row {
label = "Tile Shape"; |
radio_button {
label = "Polygon"; 1
mnemonic = "P"; 1
key = "gp_poly"; » Defines the ‘
) { Polygon |
Fhae WieEs | radio button } Defines the radio
labeI o npipeiibe s = { button area
mriemonig = M"Cv; ‘ ’
key = "gp_circ"; kikﬁnﬁihe
value = "1"; Circle
} J radio button
} J
: edit_box {
label = "Radius of tile"; L
mnemonic = "R"; Defines the
key = "gp_trad": " Radius of tile
edit_width = 6; edit box

} J

}égwm

Adding a Dialogue Béxrllnterface o

Appendix E

edit_box { |
label = "Spacing between tiles": |
mnemonic = "§"; \ Defines the
key = '"gp._spac"; | Spacing between tiles
edit_width = 6; | edit box
edit_box { W
label . Nu]:lb?r of sides"; ‘ Defines the
MRSenLe’ = "N " Number of sides
key = "gp_side"; | edit box

edit_width = 4:;

row { \
spacer { width = 1; } |
button { | |
label = "OK";
key = "accept"; \. Defines the
width = 8; e]'¢
fixed_width = true; ‘ button i
} ' \ Defines the
button { ; [OK/Cancel
label = "Cancel": | I button row
ig. cancel = true; ‘
key = "cancel"; » Defines the
width = 8; Cancel

button

fixed_width = true;

spacer { width = 13}

Dialogue Box Functions in AutoLISP—ddgp.Isp

Now that you have created the DCL file, you can edit the necessary lines in the
AutoLISP file ddgp.lsp you created from gp.Isp.

As with the DCL file, we won't explain here what each function does; the func-
tion names indicate the action each performs. The function load_dialog
does just what it says: it loads a dialogue. The function set_tile sets a spec-
ified tile’s initial value (each button, edit box, and so on is called a tile) to a
string value, just as action_tile determines the action that will be taken
when that tile is activated (edited, selected, pushed, and so on).

The new lines of code are marked with the character “ | ” as before. Some of
the old lines need to be commented out or removed from this new file; these
lines are in bold, marked with two semicolons at the beginning of the line
(77), and have the note ; <-REMOVE at the end of the line.

iii DDGP.LSP - the good old Garden Path with a new twist.

i

Convert angle in degrees to radians

(defun dtr (a)
(* pi (/ a 180.0))

Adding a Dialogue Box Interface

235

Tutorial

; Acquire information for garden path

(defun gpuser ()
(setg sp (getpoint "\nStart point of path: "))

(setg ep (getpoint sp "\nEndpoint of path: ")); <<—---ADDED 'sp'
(setg hwidth (getdist "\nHalf width of path: " sp))
;17 (setg trad (getdist "\nRadius of tiles: " sp)) ; <-REMOVE
ii (setg tspac (getdist "\nSpacing between tiles: " sp)) ;<-REMOVE

(setg pangle (angle sp ep))

(setq plength (distance sp ep))
(setg width (* 2 hwidth))

(setg angp90 (+ pangle (dtr 90)))
(setg angm90 (- pangle (dtr 90)))

; Draw outline of path

(defun drawout ()
(command "pline"
(setg p (polar sp angm30 hwidth))
(setg p (polar p pangle plength))
(setg p (polar p angp90 width))
(polar p (+ pangle (dtr 180)) plength)
"close"

; Call dialogue box to set tile specifications

(defun gp_dialog ()
(setg tshape "Circle"
trad 60
tspac 6
tsides 8)
setq dcl_id (load_dialog "ddgp.dcl"))
(not (new_dialog "gp_boxl" dcl_id)) (exit))
set_tile "gp_trad" "60"),
set_tile "gp_spac" "6")
mode_tile "gp_side" 1)
set_tile "gp_side" "8")
getion- tile "gp eirc"
" (setqg tshape \"Circle\") (mede: tile \"gp_side\" 1)")
Aactien. tile - ap . peoly™
"(setqg tshape \"Polygon\") (mode tile \"gp_side\" 0)")

(
(1
(
(
(
(
(

%

(action_tile "cancel" " (done_dialog) (setqg gperr \"\") (exit)")
(action_tile "accept" o
(strecat

"(progn (setg trad (atof (get_tile \"gp_trad\")))"
"{setqg tspac (atof (get_tile \"gp_spac\")))}"
"(setg tsides (atoil (get_tile \"gp_side\")})"

" (done_dialog))"

)
(start_dialog)

(unload_dialeog del_id)

236 Adding a Dialogue Box Interface

Appendix E

(if (= tshape "Circle")
(defun gp_tile () (command "Circle" pltile trad))
(defun gp_tile () (command "Polygon" tsides pltile "" trad))

; Define error handler

(defun gp_err, (msg)
(setqg *error* olderr)
(1f (not gperr)
(princ (strcat "\nGarden path error: " msqg))
(princ gperr)

if semde (setvar "cmdecho" scmde))

)
(1if sblip (setvar "blipmode" sblip))
(
(princ)

; Place one row of tiles given distance along path
; and possibly offset it

(defun drow (pd offset)
(setvar "snapang" pangle)
(setq pfirst (polar sp pangle pd))
(setq petile (polar pfirst angpS0 offset))
(setg pltile pctile)
(while (< (distance pfirst pltile) (- hwidth trad))
(gp_tile)
ii (command "circle" pltile trad) ; <-REMOVE
(setqg pltile (polar pltile angp9%0 (+ tspac trad trad)))
)
(setqg pltile (polar pctile angm20 (+ tspac trad trad)))
(while (< (distance pfirst pltile) (- hwidth trad))
(gp_tile)
i (command "circle" pltile trad) ; <-REMOVE
(setg pltile (polar pltile angm90 (+ tspac trad trad)))

; Draw the rows of tiles

(defun drawtiles ()
(setqg pdist (+ trad tspac))
(setg off 0.0)
(while (<= pdist (- plength trad))
(drow pdist off)
(setqg pdist (+ pdist (* (+ tspac trad trad) (sin (dtr 60)))))
(1E (= =EE 0..0)
(setqg off (* (+ tspac trad trad) (cos (dtr 60))))
(setg off 0.0)

Adding a Dialogue Box Interface 237

Tutorial

; Execute command, calling constituent functions

(defun C:DDPATH ()
(setg olderr *error*
TErYort gp_Brr

sblip nil

scmde nil

gperr nil

)
gpuser)

setg sblip (getvar "blipmode"))
setq scmde (getvar "cmdecho"))
sang (getvar "snapang"))
ctvar "blipmode" 0)

etvar "cmdecho" 0}

rawout)
gp_dialog)
(drawtiles)
(setvar "blipmode" sblip)
(setvar "cmdecho" scmde)
(setvar "snapang" sang)
(setqg *error* olderr)
(princ)

I’D

"} u’) 162!

(
(
(
(£
(s
(s
(d
{

; Print message once loaded.

(princ "\nDDGP.LSP Loaded. Type DDPATH to use.")
(prine)

Summary

See how quickly you've added a new command to AutoCAD. In many CAD
systems you need to be an experienced programmer, master a larger body of
knowledge, and have access to the CAD system'’s source code in order to do
what you've just done. The open architecture of AutoCAD has put in your
hands the power that most CAD system vendors reserve for themselves.

You can use this example as the first step in mastering AutoLISP. You might
want to start by modifying and extending the PATH or DDPATH commands
you’ve just completed. For an ambitious undertaking, make a new command
that accepts a centre point and area and draws a square of the specified area
filled with tiles.

You might also want to look through the functions you've just written in con-
junction with the other chapters of this manual. Here we’ve given only brief
descriptions of how the functions work and what you can make them do.
There’s more power buried in AutoLISP, and you can best use it by playing
around and becoming familiar with the facilities it has to offer.

As you learn to use AutoLISP, you are moving to a new level of mastery in
using AutoCAD. By using AutoLISP to automate your drafting and design
tasks, you can improve your efficiency.

23§W VVSannan

Appendix F
ASCII Codes

This appendix shows the standard ASCII codes. The octal value is useful in
character or string constants, using the \nnn form. Your system might define
additional codes in the extended, 256-character set (additional codes are
greater than 127). Some systems also redefine some of the little-used ASCII
codes such as 1-6 and 14-26. To see your system’s characters with their codes
in both decimal and octal form, run the following AutoLISP function, which
prints to the screen and to a file called ascii.txt.

(defun C:A8CITI ()
(setg chk 2 code -1 ct Q)

(textpage)
(getstring "\nWriting to file ASCII.TXT. Press ENTER to continue.")
(setqg vvv (open "ascii.txt" "w"))

(princ "\n \n CHARACTER DECIMAL OCTALA\Rn")
(while (= chk 2)
(setg code (1+ code) ct (1+ ct)

ol (rtos (/ (/ code 8) 8) 2 0)
02 (rtos (rem (/ code 8) 8) 2 0)
03 (rtos {(rem code 8) 2 0)
oct (strcat ol o2 03))
(princ (strcat "\n " (rtos code 2 ey " * (chr code) " " pct) vvv)
(princ (strcat "\n\t" (chr code) "\t" (rtos code 2 0) "\t" oct))
(1f (= code 255%)
(setg chk 0)
tif (= &t 20)
(progn

(setqg xxx (getstring (strcat "\n \nPress ’'X’ to eXit or"
v any key ©6 continuwez "))
(if (= (strcase xxx) "X")
(setg chk 0)
(progn
(seta et 0)
(prinec "\n \n CHARACTER DECIMAL OCTALA\n")

)
)
(close wvvv)
(princ)

ASCII Codes ' 239

ASCII Codes

240

Dec. |Oct.|Hex.|Char. Dec. |Oct.|Hex.|Char. Dec. |Oct.|Hex.|Char. Dec. |QOct.|Hex.|Char.
0 |000| 00 | NUL 32 |040| 20 | space 64 |100| 40 | @ 96 |140| 60 | *
1 |001| 01 | SOH 33 (041] 21 | ! 65 |101| 41 | A 97 (141 61 | a
2 |002| 02 | STX 34 (042 22| " 66 |102| 42 | B 98 (142 62 | b
3 003]| 03 | ETX 35 |043] 23 | # 67 |103| 43 | C 99 |143| 63 | ¢
4 |004| 04 | EOT 36 |044| 24 | $ 68 |104| 44 | D 100 |144| 64 | d
5 |005| 05 | ENQ 37 |045] 25 | % 69 (105 45 | E 101 |(145| 65 | e
6 |006| 06 | ACK 38 |046| 26 | & 70 |106| 46 | F 102 |146| 66 | f
7 1007| 07 | BEL (bell) 39 047 27 |’ 71 |107| 47 | G 103 |147| 67 | g
8 |010| 08 | BS 40 |050| 28 | (72 |110| 48 | H 104 [150| 68 | h
(backspace)
41 (051] 29 |) 7% |TT14 49 | il 105 [151| 69 | i
9 (0T1| 09 | HT
42 1052| 2A | * 74 |112| 4A | | 106 [152| 6A | j
10 |012| OA | LF
(linefeed) 43 |053| 2B | + 75 AT 4B | K 107 |[153]| 6B | k
11 |013| OB | VT 44 |054| 2C | , 76 |114|4C | L 108 |154| 6C | |
12 |014| 0C | FF 45 |055| 2D | - 77 (115/4D | M 109 |155|/ 6D | m
13 |015| OD | CR (return) 46 |056| 2E 78 [116| 4E | N 110 |156| 6E | n
14 (016| OE | SO 47 |057| 2F | / 79 |117| 4F | O 111 |157| 6F | ©
15 |017| OF | Sl 48 1060| 30 | O 80 (120| 50| P 112 [160| 70 | p
16 |020| 10 | DLE 49 |061] 31 | 1 81 1121|151 | Q 113 (161 71 | q
17 1021 11 | DC1 50 |062| 32| 2 82 (1221 52 | R 114 (162 72 | r
18 (022| 12 | DC2 51 |063]| 33| 3 83 123|531 S 115 |163| 73 | s
19 (023(13 | DC3 52 |064| 34 | 4 84 |124| 54 | T 116 |164| 74 | t
20 |024| 14 | DC4 53 |065| 35| 5 85 |125] 55| U 117 [165| 75 | u
21 |025| 15 | NAK 54 |066| 36 | 6 86 [126| 56 | V 118 |166| 76 | v
22 |026| 16 | SYN 55 |067|37 |7 87 |127| 57 | W 119 |167| 77 | w
23 |027| 17 | ETB 56 |070| 38 | 8 88 |[130| 58 | X 120 |170| 78 | x
24 |030| 18 | CAN 57 1071139 9 89 13159 |Y 121 N71| 79 | y
25 |031] 19 | EM 58 [072] 3A 90 (132 5A | Z 122 (172| 7A | z
26 |032| 1A | SUB 59 (073| 3B | ; 91 ([133]| 5B | [123 |173| 7B | {
27 |033| 1B | ESC 60 [074]| 3C | < 92 |134| 5C | \ 124 |174| 7C | |
(escape)
61 |075|3D | = 93 (135|5D] 125 |175| 7D | }
28 |034| 1C| FS
62 |076| 3E | > 94 |136| 5| ~ 126 [176| 7E | ~
29 |035| 1D | GS
63 |077| 3F | ? 95 [137{:5F | _ 127 |177| 7F | DEL
30 |036| 1E | RS (delete)
31 |037| 1F | US

- function, 87
examples, 28

* character, escaping, 48

* function, 87

examples, 11, 28, 56
error¥ function, 18, 113

+ function, 87
examples, 56

/ function, 88
examples, 239

/= function, 88

< function, 88
examples, 23

<= function, 89

= function, 88
examples, 32, 239

> function, 89

>= function, 89

~ function, 89

* (quote) function
examples, 7, 11
See quote function

1- function, 90
examples, 51

1+ function, 90
examples, 239

2D points, 8

3D points, 8

A

abs function, 90
Absolute value
See abs function, 90

ACAD environment variable, 16, 114

acad.lsp file, 15, 134
acad.unt file, 35, 101

acad_colordlg function, 172

example, 172

acad_helpdlg function, 172

example, 173

acad_strlsort function, 173

example, 173

Adding commands to AutoCAD, 14, 229

Addition
See + function, 87
See 1+ function, 90
ADS application

handling functions, 82

load

See xload function, 171

unload

See xunload function, 171

ADS defined
commands, 174
functions, 172

ads function, 90

alert function, 18, 90
examples, 18

alloc function, 91, 179

and function, 91

ANGBASE system variable, 29, 92, 116, 121, 152

ANGDIR system variable, 116, 121

Angle
from string

See angtof function, 91

See angle function, 91
See polar function, 143

to string

See angtos function, 92
angle function, 25, 91, 224

examples, 25

angtof function, 35, 91

examples, 35

angtos function, 33, 34, 92

examples, 34
Anonymous
blocks, 60, 108
filtering for, 48
function

See lambda function, 132

append function, 92
examples, 67
APPID symbol table, 66
apply function, 93
examples, 42

Arctangent

See atan function, 93

241

Arithmetic functions, 76

-, 87

*, 87

+, 87

/, 88

1-, 90

1+, 90

abs, 90

cos, 100

exp, 113

expt, 114

gcd, 115

log, 134

max, 136

min, 137

rem, 149

sgrt, 152
ASCIl codes, 239
ascii function, 93
Assignment

See set function, 150

See setq function, 150
assoc function, 93

examples, 56, 58, 62
atan function, 93
atof function, 94
atoi function, 94
atom function, 94
Atomlist, obsolete symbol

See atoms-family function
atoms-family function, 95, 178
AUNITS system variable, 33, 91, 92, 150

AUPREC system variable, 33, 92
AutoCAD
command

See command function, 98

Development System

See ads function, 90
graphics screen, 40, 62, 123
input devices, 40

library search path, 15, 24, 114

AutoCAD commands
ATTEDIT, 57
AUDIT, 68
BLOCK, 68
CIRCLE, 22
DXFIN, 54, 60, 68
EXPLODE, 68
HELP, 40
INSERT, 53, 59, 68
LAYER, 59
MOVE, 65
MSPACE, 61
OOPS, 68
PEDIT, 57, 62, 63
PSPACE, 61
REDRAW, 40
REGEN, 62
SETVAR, 152
STATUS, 40
STRETCH, 65
TABLET, 41
THICKNESS, 22
UNDO, 184
XBIND, 54, 68
XREF, 54, 59, 68

AutoLISP version
See ver function, 165

Automatic loading, 15, 134
.mnlfile, 15
acad.lsp file, 15
S: : STARTUP function, 16

B

bherrs function, 175
example, 175
Bitwise
boolean
See boole function, 95
not
See ~ function, 89
shift
See 1sh function, 135
BLIPMODE system variable, 233
boole function, 95
Bound atom
See boundp function, 96
boundp function, 96

C

c:bhatch function, 174
c:bpoly function, 175
c:psdrag function, 175
c:psfill function, 176
c:psin function, 176
C: XXX functions, 14, 229
caar function, 97

242

cadar function, 97 Conversion functions, 73, 80

cadddr function angtof, 35, 91
examples, 56 angtos, 33, 34, 92
caddr function ascii, 93
examples, 56 atof, 94
cadr function, 97 atoi, 94
examples, 23, 28, 56 ch¥, 97
car function, 96 cvunit, 35, 101
examples, 28, 56 degrees to radians, 222
Case distof, 34, 103
mapping, 157 fix, 115
sensitivity, 10 float, 115
cddr function, 97 itoa, 132
cdr function, 97 rtos, 33, 149
examples, 58 trans, 162
chr function, 97 Coordinate system
examples, 239 conversion, 162
Clear viewport Display (DCS), 37
See grclear function, 123 Entity (ECS), 37, 106
close function, 98, 178 Transformation function
examples, 239 trans, 36
CMDECHO system variable, 98, 233 User (UCS), 37
Command echo World (WCS), 37
See CMDECHO, 98 cos function, 100
command function, 21, 98, 226 examples, 28
examples, 14, 17, 22, 23, 28 cvunit function, 35, 101
Comments, 182 examples, 35
examples, 11
inline, 11
valid methods, 11 D
Concatenate strings
See strcat function, 157 Data types, 7
cond function, 99 Debugging functions
examples, 32 trace, 162
Conditional untrace, 165
evaluation Define function
See 1f function, 128 See defun function, 101
loop defun function, 15, 101
See while function, 168 examples, 14, 17, 24, 28, 32, 33, 35, 40,
test 41, 42, 57, 222, 239
See cond function, 99 Delete entity
Conditional functions, 80 See entdel function, 103
cons function, 100 Device access functions
examples, 28, 48, 58 grclear, 123
Constructor grdraw, 124
See cons function, 100 grread, 124
Control characters, 10, 144 grtext, 126
Conventions grvecs, 127
input, 9 DIESEL, 40
lexical, 9 in menus, 137
notational, 3 Digitizer calibration
typeface, 4 See tablet function, 159

DIMSTYLE system variable, 48
DIMZIN system variable, 33, 34, 92, 149

Index

Display control functions, 38, 74 Entity access functions

graphscr, 40 entdel, 103
menucmd, 38 entget, 104
prinl, 38 entlast, 106
princ, 38 entmake, 107
print, 38 entmod, 109
prompt, 38 entnext, 110
redraw, 40 entsel, 110
textpage, 40 entupd, 111
textscr, 40 handent, 128
Display Coordinate System (DCS), 36, 37 nentsel, 138
Display handling functions, 83 nentselp, 140
Distance ssadd, 152
See getdist function, 117 ssdel, 153
distance function, 25, 102, 224 ssget, 153
examples, 25 sslength, 156
distof function, 34, 103 ssmemb, 157
examples, 34 ssname, 157
Division Entity Coordinate System (ECS), 36, 37, 106
See / function, 88 Entity handles, 64
Draw vector Entity names, 45
See grdraw function, 124 Entity-handling functions, 75
Draw vectors entlast function, 106
See grvecs function, 127 examples, 9, 23, 51, 57, 67

entmake function, 107
examples, 59

E entmod function, 109, 212
examples, 58, 62, 67
Echo a command entnext function, 52, 54, 110, 212
See CMDECHO examples, 51, 52, 53, 58, 62
entdel function, 57, 103, 212 entsel function, 54, 110
entget function, 63, 68, 104, 212 examples, 28
examples, 56, 57, 58, 62, 67 entupd function, 111, 212
Entities examples, 62
Attribute subentity, 61 Environment variables
Block, 60, 68 ACAD, 16, 114
Endblk subentity, 60 See getenv function, 118
Polyline, 54, 62 eq function, 112
Segend subentity, 54, 60 examples, 32
Vertex subentity, 54, 61 Equal .
Viewport entity, 59, 60 See = function, 88
Entity See eq function, 112
delete See equal function, 112
See entdel function, 103 equal function, 112
handle Equality functions, 80
See handent function, 128 ERRNO system variable, 18, 209
handles, 53 Error
info messages
See entget function, 104 internal, 219
make user program, 213
See entmake function, 107 See *error* function, 113
modify Error handling, 18
See entmod function, 109 alert function, 18, 90
names, defined, 9 input validation, 184
update Error handling functions, 71
See entupd function, 111 Escape character

backslash, 10
reverse quote, 48
Escape codes, 144

244

eval function, 113
examples, 32
Evaluate
See eval function, 113
Evaluator, 11
exit function, 113
exp function, 113
expand function, 113, 179
Exponentiation
See expt function, 114
expt function, 114
Extended entity data, 63, 68
Extended entity data functions, 76
entget, 63
regapp, 66, 148
xdroom, 68, 169
xdsize, 68, 169
External Subrs, defined, 9

F
File
close, 178
See close function, 98
find
See findfile function, 114
get
See getfiled function, 118
load, 222
See load function, 133
open, 178
See open function, 142
read

See read function, 146
See read-char function, 147
See read-1ine function, 147
write
Seewrite-char function, 168
Seewrite-1line function, 169
File descriptors, defined, 9
File handling functions, 82
Files
acad.isp, 15, 134
acad.unt, 35, 101
.mnl, 15
Filter selection-set
See ssget function, 154
findfile function, 24, 114
examples, 24
fix function, 115
Flip screen
See graphscr function, 123
See textpage, 162
See textscr, 162
float function, 115
foreach function, 115
Function
automatic execution, 16
define

See defun function, 101
libraries, 15, 134
loading
See load function, 133
Function handling functions, 83

G

Garbage collection, 178
gc function, 115, 178
gcd function, 115
Geometric utility functions, 72
angle, 25, 91, 224
distance, 25, 102, 224
inters, 25, 131
polar, 25, 143
textbox, 26, 28, 161
Get
angle
See getangle function, 116
corner
See getcorner function, 116
distance, 223
See getdist function, 117
entity info
See entget function, 104
file
See getfiled function, 118
integer
See getint function, 120
orientation
See getorient function, 121
point, 223
See getpoint function, 122
real number
See getreal function, 122
string
See getstring function, 122
word
See getkword function, 120
getangle function, 29, 116
getcorner function, 29
getdist function, 29, 117, 130, 223
examples, 14, 35
getenv function, 23, 118
getfiled function, 24, 118
examples, 24
getint function, 29, 120
examples, 31
getkword function, 29, 30, 120
getorient function, 29, 116, 121
getpoint function, 29, 122, 223
examples, 14, 32, 33
getreal function, 29, 32, 122
examples, 32
getstring function, 29, 122
examples, 239
getvar function, 18, 23, 123, 209, 233
examples, 23, 33

Index 245

Global symbols, 151
Graphics screen, 40, 62, 123
See graphscr function, 123
graphscr function, 40, 123
grclear function, 40, 123
grdraw function, 40, 124
Greater than
See > function, 89
Greater than or equal
See >= function, 89
Greatest common denominator
See gcd function, 115
grread function, 40, 124
grtext function, 40, 126
examples, 41
grvecs function, 40, 127
example, 127

H

handent function, 53, 68, 128
examples, 53
Handle
See handent function, 128
HANDLES system variable, 53
HPNAME system variable, 174

I/O functions
close, 98,178
findfile, 114
load, 133, 222
open, 142,178
prinl, 144
princ, 145
print, 145
prompt, 146
read, 146
read-char, 147
read-line, 147
terpri, 161
write-char, 168
write-line, 169
xload, 171
xunload, 171
if function, 128
examples, 23, 24, 51, 52, 53, 239
Indentation, 10, 183
initget function, 30, 31, 32, 128
examples, 31, 32
Input
checking, 128
device
See grread function, 124
Input devices, 40

Integer
See getint function, 120
to ascii character
See chr function, 97
to string
See itoa function, 132
Integers
defined, 8
range, 10
Internal errors, 219
inters function, 25, 131
Intersection
See inters function, 131
itoa function, 132

K

Keyword, 128
See getkword function, 120
Keyword options for user input, 31

L

lambda function, 132
Largest number
See max function, 136
last function, 132
length function, 133
examples, 57
Less than
See < function, 88
Less than or equal
See <= function, 89
Lexical conventions, 9
Library path, 15, 114
LIMCHECK system variable, 130
list function, 133
examples, 28, 48
List manipulation functions, 81
append, 92
listp function, 133
Lists, defined, 8
Load
ADS application
See x1load function, 171
AutoLISP function
See load function, 133
load function, 133, 222
examples, 16
Loaded applications
See ads function, 90
Local symbols, 32, 151
log function, 134
logand function, 135
Logical and
See logand function, 135

fndex

Logical functions

~, 89

and, 91

boole, 95

logand, 135

logior, 135

1sh, 135

or, 143
Logical or

See logior function, 135

See or function, 143
logior function, 135
Lowercase

See strcase function, 157
Low-level graphics functions, 40, 74

grclear, 40

grdraw, 40

grread, 40

grtext, 40

grvecs, 40
1sh function, 135
LUNITS system variable, 33, 103
LUPREC system variable, 33, 150

M

Make entity
See entmake function, 107
mapcar function, 135
max function, 136
mem function, 136, 178
member function, 137
Memory
heap, 177
nodes, 177
segments, 177
stack, 177
Memory management functions, 83
alloc, 91,179
atoms-family, 178
expand, 113, 179
gc, 178
mem, 136, 178
vmon, 180
Menu
See menucmd function, 137
menucmd function, 38, 137
examples, 39, 40
Menus
calling from AutoLISP, 137
pull-down
disabling, 39
enabling, 39
marking, 40
min function, 137
Minus
See - function, 87
See 1- function, 90
minusp function, 138

.mnl file, 15
Model space, 36, 61

Model to World Transformation Matrix, 55, 139

Modify entity

See entmod function, 109
Multiplication

See * function, 87

N

Natural
antilog
See exp function, 113
log
See 1og function, 134
Negative number
Seeminusp function, 138
nentsel function, 54, 138
examples, 55
nentselp function, 54, 140
New and revised functions, 5
See acad colordlg function
See acad_helpdlg function
See acad_strlsort function
See alert function
See angtof function
See atoms -family function
See c :bhatch function
See ¢ :bpoly function
See c : psdrag function
See c:ps£ill function
See c:psin function
See distof function
See entsel function
See getfiled function
See grvecs function
See initget function
See nentsel function
See nentselp function
See ssget function
See tablet function
See textbox function
Newline
See terpri function, 161
Node
defined, 177
space, 177
Node space, 177
recover, 178
Not equal
See /= function, 88
not function, 141
examples, 51, 52, 53
Notational conventions, 3
nth function, 141
examples, 56
Null expression
See not function, 141
null function, 141

Index

247

Number
to integer
See £ix function, 115
to real
See £1loat function, 115
numberp function, 142

O

Object snap
See osnap function, 143
One’s complement
See ~ function, 89
open function, 142, 178
examples, 9, 239
or function, 143
Orientation
See getorient function, 121
osnap function, 25, 143
examples, 25

P

Paper space, 36, 61
Paper Space Display Coordinate System
(PSDCS), 37
Pattern matching
See wematch function, 166
PAUSE symbol, 22
Pausing for input, 22
PFACEVMAX system variable, 108
pi, 143
PICKFIRST system variable, 46, 153, 154
Plus
See + function, 87
See 1+ function, 90
Points
2D, 8
3D, 8
polar function, 25, 143, 226, 228
examples, 14, 25
POPUPS system variable, 130
prinl function, 38, 144
examples, 38
princ function, 38, 145
examples, 16, 24, 33, 34, 35, 38, 51, 52,
53, 57,239
print function, 38, 145
examples, 38, 57
progn function, 145
examples, 51, 52, 239
Programmable dialog box, 6
C:DDGP . DCL sample DCL file, 234
C:DDGP.LSP sample routine, 235
functions, 85
action_tile, 85, 235
example, 236
add_list, 86

248

client data tile, 86

dimx_tile, 86
dimy tile, 86
done_dialog, 85
example, 236
end_ image, 86
end_list, 86
fill image, 86
get_attr, 86
get_tile, 86
example, 236
load dialog, 85, 235
example, 236
mode_tile, 85
example, 236
new dialog, 85
example, 236
set_tile, 86, 235
example, 236
slide_image, 86
start_dialog, 85
example, 236
start image, 86
start_list, 86
term_dialog, 85
unload_dialog, 85
example, 236
vector_image, 86
Programming techniques, 182
comments, 182
indenting, 183
prompt function, 38, 146
examples, 38

Q

Query and command functions, 71

Quiet exit from function, 145, 184

quit function, 146

guote function, 11, 146
examples, 11, 47

R

read function, 146
examples, 32
read-char function, 147
read-line function, 147
Real number to string
See rtos function, 149
Real numbers, 10
defined, 8
Recent changes, 5
Recovering node space, 178
redraw function, 40, 147, 212
examples, 41
regapp function, 66, 148, 212
examples, 66

Register application

See regapp function, 148
Relational functions

/=, 88

2 188

<, 89

=, ‘88

>, 89

>=, 89

eq, 112

equal, 112
rem function, 149

examples, 239
Remainder

See rem function, 149
repeat function, 149

examples, 57
reverse function, 149
rtos function, 33, 149

examples, 33, 239

S

S: : STARTUP function, 16, 16
Sample routines
C:ARBENTRY, 32
C:ASCII, 239
C:CTIME, 40
C:DDIR, 24
C:GETNUM, 32
C:I2M, 35
C:PRINTDXF, 57
C:PSQUARE, 14
C:TABGET, 41
C:TABSET, 42
C:TBOX, 28
C:TBOX2, 28
atr, 222
REF, 33
SCREENBOXES system variable, 127
Select
entity
See entsel function, 110
subentity
Seenentsel function, 138
See nentselp function, 140
Selection methods, 46
Selection set functions, 75
ssadd, 51
ssdel, 51
ssget, 45, 47
sslength, 51
ssmemb, 51
ssname, 51
Selection sets
filter lists, 47, 48
names, 45
Selection sets, defined, 9
set function, 150

setq function, 150, 223, 228, 233
setvar function, 23, 152, 233
examples, 23, 33
sin function, 152
examples, 28
Sine
See sin function, 152
Single quote, 11
Smallest number
See min function, 137
SNAPANG system variable, 152
SPLINESEGS system variable, 63
sgrt function, 152
Square root
See sqrt function, 152
ssadd function, 51, 152, 212
examples, 51, 52
ssdel function, 51, 153, 212
examples, 51
ssget function, 45, 153
entity filter lists, 46
examples, 9, 46, 47, 48, 49, 50, 51
filter lists, 47, 48
wild card patterns, 48
sslength function, 51, 156
examples, 51
ssmemb function, 51, 157, 212
ssname function, 51, 157
examples, 51
strcase function, 157
examples, 239
strcat function, 157
examples, 24, 33, 34, 35, 239
String
control characters, 10
functions, 79
acad_strlsort, 173
read, 146
read-char, 147
read-1line, 147
strcase, 157
strcat, 157
strlen, 158
substr, 158
write-char, 168
write-line, 169
space, 179
to integer
See atoi function, 94
to real number
See atof function, 94

Strings
defined, 8
literal, 10

strlen function, 158
Subrs, defined, 9
subst function, 158
examples, 58, 62
substr function, 158

=Index

249

Subtraction
See - function, 87
See 1- function, 90
Symbol
defined, 7
local, 32
names, 9
table
See tblnext function, 160
See tblsearch function, 161
Symbol handling functions, 78
Symbol table functions, 76
tblnext, 69
example, 69
tblsearch, 69
examples, 70
Symbol table names, 48, 64
Symbol tables
APPID, 66
VPORT, 70
Symbols
Local, 151
System variables
ANGBASE, 29, 92, 116, 121, 152
ANGDIR, 116, 121
AUNITS, 33, 91, 92, 150
AUPREC, 33, 92
BLIPMODE, 233
CMDECHO, 98, 233
DIMSTYLE, 48
DIMZIN, 33, 34, 92, 149
ERRNO, 18, 209
HANDLES, 53
HPNAME, 174
LIMCHECK, 130
LUNITS, 33,103
LUPREC, 33, 150
PFACEMAX, 108
PICKFIRST, 46, 153, 154
POPUPS, 130
SCREENBOXES, 127
See getvar function, 123
See setvar function, 152
SNAPANG, 152
SPLINESEGS, 63
TABMODE, 41
TARGET, 36
TEXTEVAL, 13, 99
TILEMODE, 70
UNDOCTL, 184
UNDOMARKS, 184
UNITMODE, 34, 35, 92, 149
USERS1-5, 40

T

Tablet calibration function
tablet, 41

tablet function, 41, 159
examples, 41
TABMODE system variable, 41
TARGET systemn variable, 36
tblnext function, 69, 160
example, 69
tblsearch function, 69, 161
example, 70
examples, 66
terpri function, 161
Text
screen
See textpage function, 162
See textscr function, 162
textbox function, 26, 28, 161
examples, 26, 28
TEXTEVAL system variable, 13, 99
textpage function, 40, 162
examples, 57, 239
textscr function, 40, 162
TILEMODE system variable, 70
trace function, 162
trans function, 36, 162, 212
examples, 37
Transformation matrix, 55, 139
Translate point
See trans function, 162
Trig functions
atan, 93
cos, 100
8in, 152
type function, 164
examples, 32
Typeface conventions, 4

U

UNDOCTL system variable, 184
UNDOMARKS system variable, 184
UNITMODE system variable, 34, 35, 92, 149
Units, convert
See cvunit function, 101
Unload
ADS application
See xunload function, 171
AutoLISP functions
See recovering node space, 178
untrace function, 165
Update entity
See entupd function, 111
Uppercase
See strcase function, 157
User Coordinate System (UCS), 36, 37

User input functions, 72
getangle, 29, 116
getcorner, 29

getdist, 29,117, 130, 223

getint, 29,120
getkword, 29, 30, 120
getorient, 29, 116, 121
getpoint, 29, 122, 223
getreal, 29, 32,122
getstring, 29, 122
initget, 30, 31, 32, 128
User program errors, 213
USERS1-5 system variable, 40

\"

Variables
AutolLISP, 12
environment
ACAD, 16, 114
retrieve, 233

See getvar function, 123

set, 233

See setvar function, 152

system

ANGBASE, 92, 116, 121, 152

ANGDIR, 116, 121
AUNITS, 91, 92, 150
AUPREC, 92
BLIPMODE, 233
CMDECHO, 98, 233
DIMZIN, 92, 149
ERRNO, 209
HPNAME, 174
LIMCHECK, 130
LUNITS, 103
LUPREC, 150
PFACEMAX, 108
PICKFIRST, 46, 153, 154
POPUPS, 130
SCREENBOXES, 127
SNAPANG, 152
TEXTEVAL, 99
UNDOCTL, 184
UNDOMARKS, 184
UNITMODE, 92, 149
ver function, 165
Verification functions
atom, 94
Version
See ver function, 165
Viewports
See vports function, 166
Virtual memory, 180
vmon function, 165, 180
VPORT symbol table, 70
vports function, 166

W

wcmatch function, 43, 166
examples, 43, 44

while function, 168, 228
examples, 53, 239

Wild card
filter lists, 48
matching function

wcmatch, 43

See wematch function, 166

World Coordinate System (WCS), 36, 37

write-char function, 168
write-1line function, 169

X

xdroom function, 68, 169, 212
xdsize function, 68, 169
xload function, 171

XOR Ink, 124, 127

xunload function, 171

Z

zerop function, 171

Index

251

	ate_99_a.pdf
	1.pdf
	2.pdf
	3.pdf
	4.pdf
	5.pdf
	6.pdf
	7.pdf
	8.pdf
	9.pdf
	10.pdf
	11.pdf
	12.pdf
	13.pdf
	14.pdf
	15.pdf
	16.pdf
	17.pdf
	18.pdf
	21.pdf
	22.pdf
	23.pdf
	24.pdf
	25.pdf
	26.pdf
	27.pdf
	28.pdf
	29.pdf
	30.pdf
	31.pdf
	32.pdf
	33.pdf
	34.pdf
	35.pdf
	36.pdf
	37.pdf
	38.pdf
	39.pdf
	40.pdf
	41.pdf
	42.pdf
	43.pdf
	44.pdf
	45.pdf
	46.pdf
	47.pdf
	48.pdf
	49.pdf
	50.pdf
	51.pdf
	52.pdf
	53.pdf
	54.pdf
	55.pdf
	56.pdf
	57.pdf
	58.pdf
	59.pdf
	60.pdf
	61.pdf
	62.pdf
	63.pdf
	64.pdf
	65.pdf
	66.pdf
	67.pdf
	68.pdf
	69.pdf
	70.pdf
	71.pdf
	72.pdf
	73.pdf
	74.pdf
	75.pdf
	76.pdf
	77.pdf
	78.pdf
	79.pdf
	80.pdf
	81.pdf
	82.pdf
	83.pdf
	84.pdf
	85.pdf
	86.pdf
	87.pdf
	88.pdf
	89.pdf
	90.pdf
	91.pdf
	92.pdf
	93.pdf
	94.pdf
	95.pdf
	96.pdf
	97.pdf
	98.pdf
	99.pdf

	ate_ao_fim_a.pdf
	100.pdf
	101.pdf
	102.pdf
	103.pdf
	104.pdf
	105.pdf
	106.pdf
	107.pdf
	108.pdf
	109.pdf
	110.pdf
	111.pdf
	112.pdf
	113.pdf
	114.pdf
	115.pdf
	116.pdf
	117.pdf
	118.pdf
	119.pdf
	120.pdf
	121.pdf
	122.pdf
	123.pdf
	124.pdf
	125.pdf
	126.pdf
	127.pdf
	128.pdf
	129.pdf
	130.pdf
	131.pdf
	132.pdf
	133.pdf
	134.pdf
	135.pdf
	136.pdf
	137.pdf
	138.pdf
	139.pdf
	140.pdf
	141.pdf
	142.pdf
	143.pdf
	144.pdf
	145.pdf
	146.pdf
	147.pdf
	148.pdf
	149.pdf
	150.pdf
	151.pdf
	152.pdf
	153.pdf
	154.pdf
	155.pdf
	156.pdf
	157.pdf
	158.pdf
	159.pdf
	160.pdf
	161.pdf
	162.pdf
	163.pdf
	164.pdf
	165.pdf
	166.pdf
	167.pdf
	168.pdf
	169.pdf
	170.pdf
	171.pdf
	172.pdf
	173.pdf
	174.pdf
	175.pdf
	176.pdf
	177.pdf
	178.pdf
	179.pdf
	180.pdf
	181.pdf
	182.pdf
	183.pdf
	184.pdf
	185.pdf
	187.pdf
	188.pdf
	189.pdf
	190.pdf
	191.pdf
	192.pdf
	193.pdf
	195.pdf
	196.pdf
	197.pdf
	198.pdf
	199.pdf
	200.pdf
	201.pdf
	202.pdf
	203.pdf
	204.pdf
	205.pdf
	206.pdf
	207.pdf
	209.pdf
	210.pdf
	211.pdf
	212.pdf
	213.pdf
	214.pdf
	215.pdf
	216.pdf
	217.pdf
	218.pdf
	219.pdf
	221.pdf
	222.pdf
	223.pdf
	224.pdf
	225.pdf
	226.pdf
	227.pdf
	228.pdf
	229.pdf
	230.pdf
	231.pdf
	232.pdf
	233.pdf
	234.pdf
	235.pdf
	236.pdf
	237.pdf
	238.pdf
	239.pdf
	240.pdf
	241.pdf
	242.pdf
	243.pdf
	244.pdf
	245.pdf
	246.pdf
	247.pdf
	248.pdf
	249.pdf
	250.pdf
	251.pdf

